首页> 外文学位 >Development and clinical applications of a mathematical model of the human hypothalamic-pituitary-thyroid axis.
【24h】

Development and clinical applications of a mathematical model of the human hypothalamic-pituitary-thyroid axis.

机译:人类下丘脑-垂体-甲状腺轴的数学模型的开发和临床应用。

获取原文
获取原文并翻译 | 示例

摘要

Thyroid hormone (TH) regulation is a classic example of biological feedback control. Hypothalamic TRH stimulates TSH secretion, which stimulates secretion of thyroid hormones T3 and T4. TH inhibits TSH and TRH, forming two negative feedback loops. We developed a physiology-based mathematical model of the human hypothalamic-pituitary-thyroid axis, quantified with clinical data. We first structured and quantified the TH model components, followed by the brain (TRH and TSH) components. We combined these finished submodels to form a complete closed loop model, which we validated with independent clinical data. We addressed several applications in replacement TH (L-T 4) bioequivalence (equivalence between brands), stability, combined vs. single hormone replacement therapy, circadian rhythms, and thyroid cancer. Bioequivalence: We first tested the current L-T4 FDA bioequivalence standards, finding bioequivalent dose ranges and suggesting an improved baseline correction. We also tested an alternative TSH-based bioequivalence measure, which we found to be more sensitive than the current T4-based measure. Combined therapy: TH replacement typically consists only of T4, as T4 has a longer half-life and most T 3 is made throughout the body by enzymatic T4 → T 3 conversion. We tested whether combined T4+T3 therapy would more effectively treat hypothyroidism, finding standard T 4-only sufficient for most cases. Circadian rhythms: Plasma TSH normally exhibits a daily circadian oscillation, with a nighttime peak and daytime nadir. Decreased TSH circadian rhythms (CR) are observed in both extreme primary and central hypothyroidism, though the causes are not well understood. We examined whether these phenomena might be due to a single cause. We implemented two secretion saturation-based mechanisms for diminished TSH CR in primary hypothyroidism, and found that they yielded decreased CR in both disorders, while the original model did not show decreased CR, supporting our hypothesis. Remnant ablation: After thyroidectomy for thyroid cancer, patients typically undergo TH withdrawal or recombinant human TSH dosing, followed by 131I treatment to ablate remaining thyroid remnants or metastases. We tested alternative T3 and T 4 based withdrawal protocols for rapidity in achieving increased TSH (30-50 mU/L), finding a faster rise using T3-based withdrawal.
机译:甲状腺激素(TH)调节是生物反馈控制的经典例子。下丘脑TRH刺激TSH分泌,从而刺激甲状腺激素T3和T4的分泌。 TH抑制TSH和TRH,形成两个负反馈环路。我们开发了基于生理学的人类下丘脑-垂体-甲状腺轴的数学模型,并通过临床数据进行了量化。我们首先构造和量化TH模型的组成部分,然后是大脑(TRH和TSH)的组成部分。我们将这些完成的子模型组合在一起,形成一个完整的闭环模型,并用独立的临床数据进行了验证。我们讨论了替代TH(L-T 4)生物等效性(品牌之间的等效性),稳定性,联合激素替代疗法与单激素替代疗法,昼夜节律和甲状腺癌的几种应用。生物等效性:我们首先测试了当前的L-T4 FDA生物等效性标准,发现了生物等效剂量范围,并提出了改进的基线校正方法。我们还测试了另一种基于TSH的生物等效性测量方法,我们发现它比当前基于T4的测量方法更加敏感。联合疗法:TH替代通常仅由T4组成,因为T4的半衰期更长,并且大多数T 3是通过酶促T4→T 3转化而在体内产生的。我们测试了T4 + T3联合治疗是否能更有效地治疗甲状腺功能减退症,发现标准T-4仅适用于大多数情况。昼夜节律:血浆TSH通常表现为昼夜节律振荡,具有夜间高峰和白天最低点。在极端的原发性和中枢性甲状腺功能减退症中均观察到TSH昼夜节律(CR)降低,但原因尚不清楚。我们检查了这些现象是否可能是由单一原因引起的。我们实施了两种基于分泌饱和的机制来减少原发性甲状腺功能减退症中的TSH CR,并发现它们在两种疾病中均导致CR降低,而原始模型并未显示CR降低,这支持了我们的假设。残余消融:甲状腺切除术治疗甲状腺癌后,患者通常接受TH戒断或重组人TSH剂量,然后进行131I治疗以消融剩余的甲状腺残余或转移灶。我们测试了基于T3和T 4的替代戒断协议,以实现增加的TSH(30-50 mU / L)的快速性,并发现使用基于T3的戒断可以更快地实现提升。

著录项

  • 作者

    Eisenberg, Marisa Cristina.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Applied Mathematics.;Engineering Biomedical.;Biology Endocrinology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号