首页> 外文学位 >A fluid structure interaction strategy with application to low Reynolds number flapping flight.
【24h】

A fluid structure interaction strategy with application to low Reynolds number flapping flight.

机译:一种流体结构相互作用策略及其在低雷诺数扑动飞行中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this work a structured adaptive mesh refinement (S-AMR) strategy for fluid-structure interaction (FSI) problems in laminar and turbulent incompressible flows is developed. The Eulerian computational grid consists of nested grid blocks at different refinement levels. The grid topology and data-structure is managed by using the Paramesh toolkit. The filtered Navier-Stokes equations are evolved in time by means of an explicit second-order projection scheme, where spatial derivatives are approximated with second order central differences on a staggered grid. The level of accuracy of the required variable interpolation operators is studied, and a novel divergence-preserving prolongation scheme for velocities is evolved. A novel direct-forcing embedded-boundary method is developed to enforce boundary conditions on a complex moving body not aligned with the grid lines. In this method, the imposition of no-slip conditions on immersed bodies is done on the Lagrangian markers that represent their wet surfaces, and the resulting force is transferred to the surrounding Eulerian grid points by a moving least squares formulation. Extensive testing and validation of the resulting strategy is done on a numerous set of problems. For transitional and turbulent flow regimes the large-eddy simulation (LES) approach is used. The grid discontinuities introduced in AMR methods lead to numerical errors in LES, especially if non-dissipative, centered schemes are used. A simple strategy is developed to vary the filter size for filtered variables around grid discontinuities. A strategy based on explicit filtering of the advective term is chosen to effectively reduce the numerical errors across refinement jumps. For all the FSI problems reported, the complete set of equations governing the dynamics of the flow and the structure are simultaneously advanced in time by using a predictor-corrector strategy. Dynamic fluid grid adaptation is implemented to reduce the number of grid points and computation costs. Applications to flapping flight comprise the study of flexibility effects on the aerodynamic performance of a hovering airfoil, and simulation of the flow around an insect model under prescribed kinematics and free longitudinal flight. In the airfoil simulations, it is found that peak performance is located in structural flexibility-inertia regions where non-linear resonances are present.
机译:在这项工作中,针对层流和湍流不可压缩流中的流固耦合(FSI)问题,开发了一种结构化的自适应网格细化(S-AMR)策略。欧拉计算网格由不同细化级别的嵌套网格块组成。网格拓扑和数据结构是使用Paramesh工具包管理的。滤波后的Navier-Stokes方程借助显式的二阶投影方案随时间演化,其中空间导数通过交错网格上的二阶中心差来近似。研究了所需变量插值算子的精度水平,并开发了一种新的速度保持发散延长方案。开发了一种新颖的直接强制嵌入边界方法,以在不与网格线对齐的复杂运动物体上施加边界条件。在此方法中,在代表其湿表面的拉格朗日标记上对浸没物体施加防滑条件,然后通过移动最小二乘公式将合力传递到周围的欧拉网格点。针对大量问题对结果策略进行了广泛的测试和验证。对于过渡和湍流状态,使用大涡模拟(LES)方法。在AMR方法中引入的网格不连续性会导致LES中的数值误差,特别是在使用非耗散,居中方案的情况下。开发了一种简单的策略来更改网格不连续周围的已过滤变量的过滤大小。选择一种基于对流项显式过滤的策略,以有效减少精炼跳跃中的数值误差。对于报告的所有FSI问题,通过使用预测器-校正器策略,可以同时同时改进控制流动和结构动力学的完整方程组。实现动态流体网格自适应以减少网格点的数量和计算成本。扑翼飞行的应用包括研究对悬停翼型的空气动力性能的柔韧性影响,以及在规定的运动学和自由纵向飞行条件下模拟昆虫模型周围的流动。在翼型仿真中,发现峰值性能位于存在非线性共振的结构柔韧性惯性区域。

著录项

  • 作者

    Vanella, Marcos.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号