首页> 外文学位 >Modeling mercury transport and bioaccumulation in the Carson River and Lahontan Reservoir system, Nevada.
【24h】

Modeling mercury transport and bioaccumulation in the Carson River and Lahontan Reservoir system, Nevada.

机译:内华达州卡森河和拉洪坦水库系统中的汞迁移和生物富集模型。

获取原文
获取原文并翻译 | 示例

摘要

A fully dynamic transport model is developed to capture loading mechanisms for total and dissolved mercury (Hg) species for all flow regimes in the Carson River Lahontan Reservoir (CRLR) system. The conversion of inorganic Hg into the toxic, and highly bioavailable, methylmercury (MeHg), is defined with methylation and demethylation (M/D) ratios. M/D occurs in the channel and reservoir bed sediments as well as in channel bank sediments, with bank M/D adjusted for moisture history. Monte Carlo, generalized likelihood uncertainty estimates and first-order second-moment analysis help define what components in the model are well understood and what components remain highly uncertain. Uncertainty in dissolved species in the downstream reservoir is dominated by uncertainty in higher flow loading mechanisms upstream and not from uncertainty related to reservoir benthic fluxes. The CRLR system affords the opportunity to test sensitivity of predicted body burdens in the planktivorous Sacramento blackfish (Orthodon microlepidotus) to a variable water quality signal in the context of uncertainty in that signal. A bioenergetic and mercury mass balance model (BMMBM) is developed and shows that dynamic and constant loading scenarios produce statistically similar results in predicted MeHg body burden at any given location in the reservoir. However, results suggest that coupling of peak dissolved MeHg loads with periods of maximum plankton growth and maximum fish consumption rates can account for large burdens in the planktivore. Lags in downstream transport can decouple processes and body burden estimates decrease. Sensitivity to the timing of fluvial inputs to the reservoir is greatest in the upstream receiving basin where there is little attenuation in fluvial loads.
机译:建立了一个完全动态的运输模型,以捕获卡森河拉洪坦水库(CRLR)系统中所有流态下总汞和溶解汞(Hg)物种的负载机制。无机汞转化为有毒的,高生物利用度的甲基汞(MeHg)的比例是甲基化和脱甲基化(M / D)。 M / D发生在河道和储层的沉积物中以及河道堤岸的沉积物中,并根据湿度历史对堤岸的M / D进行了调整。蒙特卡洛(Monte Carlo),广义似然不确定性估计和一阶二阶矩分析可帮助定义模型中的哪些组件,以及哪些组件仍然高度不确定。下游储层中溶解物质的不确定性主要由上游较高的水流加载机制的不确定性决定,而不是与储层底流通量有关。 CRLR系统提供了机会来测试浮游性萨克拉曼多黑鱼(Orthodon microlepidotus)中预测的身体负担对可变水质信号的敏感性,以确保该信号的不确定性。建立了生物能和汞的质量平衡模型(BMMBM),该模型显示出动态恒定负荷情景在储层中任何给定位置的预测MeHg人体负荷方面产生统计上相似的结果。但是,结果表明,峰值溶解的MeHg负荷与最大浮游生物生长期和最大鱼类消耗率的耦合可以解决浮游动物的巨大负担。下游运输的滞后可以使过程脱钩,而人体负担的估计值降低。在上游接收盆地,河流负荷的衰减很小,因此对河流输入水库时机的敏感性最大。

著录项

  • 作者

    Carroll, Rosemary W. H.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Hydrology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号