首页> 外文学位 >Nucleic acids-templated semiconductor nanocrystals: Synthesis and bioimaging applications.
【24h】

Nucleic acids-templated semiconductor nanocrystals: Synthesis and bioimaging applications.

机译:核酸模板化的半导体纳米晶体:合成和生物成像应用。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor nanocrystals are used widely as biological labels and components of optoelectronic devices. The spectral tunability and stability of these materials makes them ideal building blocks and probes. This thesis describes work on a class of semiconductor nanocrystals with properties controlled by the structure and sequence of nucleic acids. Controlling nanocrystal properties using rationally designed nucleic acids structures and sequences presents a new means to engineer inorganic structures with desired properties, and provides a means to produce biofunctionalized imaging labels in a single step. The materials produced using this approach have favorable characteristics, including bright emission, high stability, and straightforward synthetic manipulation.;DNA-passivated semiconductor nanocrystals exhibit low cytotoxicity and high stability in biological media and thus are superior for bioimaging applications. Given the molecular recognition properties of DNA and RNA aptamers with other biomolecules such as proteins or cell surface receptors, we were inspired to use a bi-functional DNA template to generate biofunctionalized semiconductor nanocrystals in a simple one-pot process. This novel strategy is realized by the design of a chimeric DNA template with a phosphorothioate domain for semiconductor nanocrystals passivation and a phosphate domain (aptamer) for biomolecule recognition. CdTe semiconductor nanocrystals synthesized with the chimeric DNA template possess high specificities towards the cognate DNA, protein, and cancer cell targets.;The properties of semiconductor nanocrystals are known to be strongly dependent on the ligand used during synthesis that serves to passivate the surface. We endeavored to use a class of ligands that would have intrinsic self-assembly properties and inherent biocompatibility. We therefore tested nucleic acids including DNA and RNA molecules as ligands for cadmium and lead-based nanocrystals formation. Nucleic acids molecules passivate on semiconductor nanocrystal surface through their nucleobase functionalities as well as the phosphate backbone. Among the four natural mononucleotides, guanine is the most effective nucleotide for semiconductor nanocrystals formation. Semiconductor nanocrystals synthesized with different DNA homopolymer sequences possess distinct luminescence intensities. A general approach is being developed to systematically control semiconductor nanocrystals luminescence using rationally designed DNA sequences. In addition, the effect of nucleic acids structure on CdS semiconductor nanocrystals properties is elucidated using transfer RNA molecules as a ligand system, and differences in size and morphology were observed for the semiconductor nanocrystals synthesized with different RNA structures.
机译:半导体纳米晶体被广泛用作光电子器件的生物标记和组件。这些材料的光谱可调性和稳定性使其成为理想的构建基块和探针。本论文描述了对一类性质受核酸的结构和序列控制的半导体纳米晶体的研究。使用合理设计的核酸结构和序列控制纳米晶体的性质提供了一种工程改造具有所需性质的无机结构的新方法,并提供了一种在一步之内生产生物功能化成像标记的方法。使用这种方法生产的材料具有良好的特性,包括发光明亮,高稳定性和简单的合成操作。DNA钝化的半导体纳米晶体在生物介质中显示出低细胞毒性和高稳定性,因此在生物成像应用中表现优异。鉴于DNA和RNA适体与其他生物分子(如蛋白质或细胞表面受体)的分子识别特性,我们受到启发,使用双功能DNA模板以简单的一锅法生成生物功能化的半导体纳米晶体。通过设计一种嵌合的DNA模板来实现这一新颖的策略,该模板具有用于半导体纳米晶体钝化的硫代磷酸酯结构域和用于生物分子识别的磷酸酯结构域(适体)。用嵌合DNA模板合成的CdTe半导体纳米晶体对同源的DNA,蛋白质和癌细胞靶具有高度特异性。已知半导体纳米晶体的性能强烈依赖于合成过程中使用的可钝化表面的配体。我们努力使用一类具有固有的自组装特性和固有的生物相容性的配体。因此,我们测试了包括DNA和RNA分子在内的核酸,以作为镉和铅基纳米晶体形成的配体。核酸分子通过其核碱基官能团以及磷酸盐主链钝化在半导体纳米晶体表面。在四种天然单核苷酸中,鸟嘌呤是形成半导体纳米晶体的最有效核苷酸。用不同的DNA均聚物序列合成的半导体纳米晶体具有不同的发光强度。正在开发一种使用合理设计的DNA序列来系统控制半导体纳米晶体发光的通用方法。此外,使用转移RNA分子作为配体系统阐明了核酸结构对CdS半导体纳米晶体性能的影响,并观察到了合成具有不同RNA结构的半导体纳米晶体在大小和形态上的差异。

著录项

  • 作者

    Ma, Nan.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Chemistry Biochemistry.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号