首页> 外文学位 >Development and application of high-field, high-gradient pulsed field gradient NMR for studies of diffusion behavior of lipids in model membranes .
【24h】

Development and application of high-field, high-gradient pulsed field gradient NMR for studies of diffusion behavior of lipids in model membranes .

机译:高场,高梯度脉冲场梯度NMR的开发和应用,用于研究脂质在模型膜中的扩散行为。

获取原文
获取原文并翻译 | 示例

摘要

This work presents the development and application of a high-field, high-gradient pulsed field gradient nuclear magnetic resonance technique for studies of lipid lateral diffusion in planar-supported lipid bilayers composed of ternary mixtures of lipids intended to mimic the composition of eukaryotic cell membranes. Lipid rafts are small functional domains that exist in cell membranes. It is widely accepted that rafts participate in many cellular activities such as signal transduction. Lipid rafts in non-activated cells are believed to be smaller than around 200 nm in size and quite unstable. Liquid-ordered domains in model membranes share similar characteristics to lipid rafts. In these studies, domains as large as 10 mum have been observed under certain conditions. However, recent data indicates that much smaller domains can also form and remain stable in these model membranes under certain conditions. In order to accurately characterize lateral transport of lipids in domain-forming model membranes and possibly extract information relevant to the study of lipid rafts, an experimental technique is required which has sufficient spatial resolution and does not disturb the membrane or any liquid-ordered domains which might exist. Pulsed field gradient nuclear magnetic resonance (PFG NMR) allows for the direct observation of molecular mean square displacements and their related diffusion coefficients in a manner which does not perturb the membrane since additives, such as fluorescently-labeled lipids, are unnecessary. In this work, the use of a high magnetic field strength (17.6 T) coupled with high magnetic field gradient strength of up to 30 T/m affords the use of smaller diffusion times under the conditions of the narrow-pulse approximation which allows for distortion-free monitoring of time-dependent and displacement-dependent diffusion behavior of lipids with superior signal-to-noise. Diffusion measurements conducted on membranes consisting of a mixture of DOPC, SM, and Chol show diffusion behavior which was independent of diffusion time, consistent with the presence of large liquid-ordered domains. Formation of smaller domains was observed in membranes consisting of DOPC, DPPC, and Chol near the miscibility transition temperature which manifests as time-dependent diffusion behavior of lipids. It was verified that this behavior was a consequence of lipid exchange between liquid-ordered domains and the surrounding liquid-disordered environment rather than an NMR relaxation effect. Dynamic Monte Carlo simulations were used in conjunction with time-dependent diffusion results to extract information about domain size and the permeability of the domain boundary. This is the first observation of time-dependent diffusion and estimation of such properties for lipid membranes of any composition. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
机译:这项工作提出了一种高场,高梯度脉冲场梯度核磁共振技术的开发和应用,用于研究平面支撑的脂质双层中脂质的侧向扩散,该双层双层脂质旨在模拟真核细胞膜的组成。脂质筏是存在于细胞膜中的小功能域。筏子参与许多细胞活动,例如信号转导,已被广泛接受。据认为,未活化细胞中的脂质筏的尺寸小于200 nm,并且非常不稳定。模型膜中的液体有序域与脂质筏具有相似的特征。在这些研究中,在某些条件下已观察到最大10微米的区域。但是,最新数据表明,在某些条件下,这些模型膜中也可以形成并保持较小的结构域。为了准确表征脂质在形成结构域的模型膜中的侧向运输并可能提取与脂质筏研究有关的信息,需要一种实验技术,该技术应具有足够的空间分辨率,并且不会干扰膜或任何有序排列的液体可能存在。脉冲场梯度核磁共振(PFG NMR)可以直接观察分子均方位移及其相关的扩散系数,而不会干扰膜,因为不需要添加剂,例如荧光标记的脂质。在这项工作中,使用高磁场强度(17.6 T)与高达30 T / m的高磁场梯度强度相结合,可以在窄脉冲近似条件下使用较小的扩散时间,从而允许失真-具有优异信噪比的脂质随时间和位移相关的扩散行为的免费监测。在由DOPC,SM和Chol的混合物组成的膜上进行的扩散测量显示,扩散行为与扩散时间无关,这与大的有序域相一致。在由DOPC,DPPC和Chol组成的膜中,在相溶转变温度附近观察到较小域的形成,这表现为脂质的时间依赖性扩散行为。证实该行为是液体有序域和周围液体无序环境之间脂质交换的结果,而不是NMR弛豫效应。动态蒙特卡罗模拟与随时间变化的扩散结果结合使用,以提取有关畴尺寸和畴边界渗透率的信息。这是对任何成分的脂质膜随时间扩散并评估此类特性的首次观察。 (可通过佛罗里达大学图书馆网站获得本文的全文。请检查http://www.uflib.ufl.edu/etd.html)

著录项

  • 作者

    Sanders, Monica Danielle.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号