首页> 外文学位 >Tailoring the Microstructure of 2D Molecular Sieve Materials for Thin Film Applications
【24h】

Tailoring the Microstructure of 2D Molecular Sieve Materials for Thin Film Applications

机译:为薄膜应用量身定制2D分子筛材料的微观结构

获取原文
获取原文并翻译 | 示例

摘要

Zeolites and metal organic frameworks (MOFs) are microporous materials, with pores of molecular dimensions, that are of interest in a variety of applications including catalysis, adsorption, ion-exchange, separation membranes etc. With a global need of developing clean energy resources and reducing the carbon footprint of existing processes, they are being increasingly sought after as catalysts for the conversion of biomass to chemicals and fuels, in separation membranes to replace the existing energy intensive industrial separations with clean energy-efficient processes and for capture and storage of carbon dioxide. Their performance in these applications depends mainly on their pore size but also on our ability to tune their microstructure (crystal morphology and size, orientation, phase purity, defect densities etc.) as desired for an optimum performance. Recent advances in synthesis of molecular sieve materials have resulted in the development of advanced morphologies such as hierarchical materials, core-shell catalysts, two-dimensional nanosheets and thin films. However, a lot of the reports in the literature focus on conventional crystals and studies focusing on nanoscale crystal growth control are still in their infancy. This dissertation focuses on developing synthetic methods that will enable us to tailor the microstructure of 2D molecular sieve materials at a nanoscale approaching single-unit-cell dimensions with a goal of optimizing their performance in thin film applications. A novel coating technique was applied to isolate 2D MFI zeolite nanosheets and form monolayer coatings on versatile supports such as Si wafers. Using this as a prototype, growth conditions were developed that lead to unprecedented control of zeolite MFI growth at a scale approaching single-unit-cell dimensions. It was demonstrated that these growth conditions are robust enough and can be used to grow zeolite MFI crystals of varied sizes and morphology. It also enabled us to precisely control the microstructure of MFI thin films leading to the development of a material that had one of the lowest reported dielectric constant. Furthermore, the nanoscale growth control also allowed us to tailor the design of hierarchical catalysts by controllably thickening the zeolite domains in them and open opportunities to design multifunctional catalysts. A scalable and direct synthesis of Cu(BDC) MOF nanosheets was developed. Hybrid nanocomposites incorporating the MOF nanosheets in polymer matrices were fabricated which demonstrated significantly improved performance for CO2/CH4 separation.
机译:沸石和金属有机骨架(MOF)是微孔材料,具有分子尺寸的孔,在包括催化,吸附,离子交换,分离膜等在内的各种应用中均引起人们的关注。减少现有工艺的碳足迹,它们正日益受到人们的追捧,它们被用作分离膜中的生物质转化为化学品和燃料的催化剂,用清洁的节能工艺代替现有的能源密集型工业分离方法,以及碳的捕集和储存二氧化碳。它们在这些应用中的性能主要取决于其孔径,还取决于我们根据其最佳性能调整其微观结构(晶体形态和尺寸,取向,相纯度,缺陷密度等)的能力。分子筛材料合成的最新进展导致了高级形态的发展,例如分层材料,核-壳催化剂,二维纳米片和薄膜。但是,文献中的许多报道都集中在常规晶体上,而有关纳米级晶体生长控制的研究仍处于起步阶段。本文致力于开发合成方法,使我们能够在接近单晶胞尺寸的纳米尺度上定制2D分子筛材料的微观结构,以优化其在薄膜应用中的性能。一种新颖的涂层技术被应用于隔离二维MFI沸石纳米片,并在多功能支撑物(例如Si晶圆)上形成单层涂层。以此为原型,开发了生长条件,从而导致以前所未有的方式控制沸石MFI的生长,接近单晶胞尺寸。结果表明,这些生长条件足够坚固,可用于生长各种尺寸和形态的MFI沸石晶体。这也使我们能够精确控制MFI薄膜的微观结构,从而开发出一种介电常数最低的材料。此外,纳米级生长控制还使我们能够通过可控制地增稠其中的沸石区域来定制分层催化剂的设计,并为设计多功能催化剂提供了机会。开发了Cu(BDC)MOF纳米片的可扩展和直接合成。制备了在聚合物基质中掺入MOF纳米片的杂化纳米复合材料,这些杂化纳米复合材料显示出CO2 / CH4分离性能显着提高。

著录项

  • 作者

    Shete, Meera Hemant.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemical engineering.;Materials science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号