首页> 外文学位 >Development and evaluation of whole slide hyperspectral confocal fluorescence and brightfield macroscopy.
【24h】

Development and evaluation of whole slide hyperspectral confocal fluorescence and brightfield macroscopy.

机译:整个载玻片高光谱共聚焦荧光和明场宏观显微镜的开发和评估。

获取原文
获取原文并翻译 | 示例

摘要

Microscopic imaging in the biomedical sciences allows for detailed study of the structure and function of normal and abnormal (i.e., diseased) states of cells and tissues. The expression patterns of proteins and/or physiological parameters within these specimens can be related to disease progression and prognosis, and are often heterogeneously spread throughout the entire specimen. With conventional microscopy, a large number of individual image 'tiles' must be captured and subsequently combined into a mosaic of the entire specimen. This has the potential to introduce artefacts at the image seams, as well as introducing non-uniform illumination of the entire specimen.This thesis reports the development of hyperspectral, fluorescence and brightfield imaging of entire, paraffin-embedded, formalin-fixed (PEFF) tissue slides using a prototype confocal scanner with a large field of view (FOV). This technology addresses the challenges of imaging large tissue sections through the use of a telecentric f-theta laser scan lens thus allowing an entire microscope slide (22x70 mm) to be imaged in a single scan at resolution equivalent to a 10x microscope objective. The development and optimization of brightfield and single-channel fluorescence imaging modes are discussed in the first half of this thesis, while the second half and appendices concentrate on the spectral properties of the system and removal of AF from PEFF tissue sections. The hyperspectral imaging mode designed for this system allows the fluorescence emission spectrum of each image pixel to be sampled at 6.7 nm/channel over a spectral range of 500-700 nm. This results in the ability to separate distinct fluorescence signatures from each other, and enables quantification even in situations where the AF completely masks the signal from the applied labels.A further limitation often encountered in biomedical fluorescence microscopy is the high background due to the autofluorescence (AF) of endogenous compounds within cells and tissues. Often, AF can prevent the detection and/or accurate quantification in fluorescently-labelled tissues and, in general, can reduce the reliability of results obtained from such specimens. AF spectra are relatively broad and so can be present across a large number of image spectral channels. The intensity of AF also increases as the excitation wavelength is decreased, causing increasing amounts of autofluorescence when exciting in the blue and near-UV range of the spectrum (400--500 nm).
机译:生物医学科学中的显微成像允许对细胞和组织的正常和异常(即患病)状态的结构和功能进行详细研究。这些标本中蛋白质的表达模式和/或生理参数可能与疾病的进展和预后有关,并且通常在整个标本中异质分布。使用常规显微镜,必须捕获大量的单个图像“平铺”,然后将其组合成整个样本的镶嵌图。这有可能在图像接缝处引入伪像,并引入整个样本的不均匀照明。本文报道了整个,石蜡包埋,福尔马林固定(PEFF)的高光谱,荧光和明场成像的发展使用具有大视野(FOV)的原型共聚焦扫描仪扫描组织玻片。这项技术通过使用远心f-theta激光扫描镜头解决了对大组织切片成像的挑战,因此可以在单次扫描中以相当于10倍显微镜物镜的分辨率对整个显微镜载玻片(22x70 mm)进行成像。本文的上半部分讨论了明场和单通道荧光成像模式的开发和优化,而下半部分和附录则集中于系统的光谱特性以及从PEFF组织切片中去除AF。为此系统设计的高光谱成像模式允许在500-700 nm的光谱范围内以6.7 nm /通道对每个图像像素的荧光发射光谱进行采样。这样可以分离出不同的荧光特征,即使在AF完全掩盖了所施加标记的信号的情况下也可以进行定量分析。生物医学荧光显微镜经常遇到的另一个局限性是由于自发荧光导致的背景高(细胞和组织内的内源性化合物(AF)。 AF通常会阻止荧光标记组织中的检测和/或准确定量,并且通常会降低从此类样本获得的结果的可靠性。 AF光谱相对较宽,因此可以出现在大量图像光谱通道中。当激发波长减小时,AF的强度也会增加,从而在光谱的蓝色和近紫外范围(400--500 nm)中激发时导致自发荧光量增加。

著录项

  • 作者

    Constantinou, Paul.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号