首页> 外文学位 >Computational modeling and automation techniques to study biomolecular dynamics.
【24h】

Computational modeling and automation techniques to study biomolecular dynamics.

机译:用于研究生物分子动力学的计算建模和自动化技术。

获取原文
获取原文并翻译 | 示例

摘要

Physically-principled computational modeling and automation techniques have emerged as potent methodologies in exploring biomolecular dynamics and generating experimentally-testable hypotheses. In this dissertation, we develop a set of simulation automation techniques and present results on case studies of biomolecular simulation. Nucleosomes form the fundamental building blocks of eukaryotic chromatin. We use multiscale modeling and discrete molecular dynamics simulations to investigate the dynamics of the Xenopus laevis nucleosome core particle, the fundamental unit of chromatin. Histone tails are flexible and are poorly resolved in X-ray crystal structures. We probe how molecular-level dynamics of the histone tails, core histones and associated DNA mediate chromatin stability at the scale of single-nucleosomes. Based on the positional fluctuations of core histone residues, we postulate cold sites, a set of core histone residues essential for stabilizing the Xenopus laevis nucleosome core particle. We explore changes in the biophysical stability of mono-nucleosomes by designing mutations in core histones and using Medusa, a high-throughput computational technique to explore changes in mononucleosomal stability resulting from point mutations. The presence of centromere-specific H3 variant histone (Cse4) in centromere-specific nucleosomes defines the kinetochore locus. However, structural details of the centromere-specific nucleosomes remain to be completely understood. We construct a homology model of the Saccharomyces cerevisiae centromeric nucleosome and generate a biophysically-principled C-loop model for elongation of Saccharomyces cerevisiae kinetochore. We present simulation automation techniques by means of two web-based servers: iFold (http://iFold.dokhlab.org) and iFoldRNA (http://iFoldRNA.dokhlab.org). iFold enables automated simulations of protein folding, unfolding using discrete molecular dynamics. iFoldRNA enables ab initio RNA structure prediction using replica-exchange discrete molecular dynamics simulations. We also demonstrate rapid and accurate three-dimensional structure prediction of over 150 RNA molecules. We used all-atom molecular dynamics simulations to study the mechanistic and structural differences between two anticancer therapeutics - cisplatin and oxaliplatin. Our simulations suggest that the cisplatinated- and oxaliplatinated- DNA cause differential effects on the dynamics and bending propensities of adducted DNA. This study suggest a role of differential bending propensities in the efficacies of oxaliplatin and cisplatin. In summary, the research presented in this dissertation helps us understand the mechanisms of biomolecular interactions at atomic and mesoscale levels. This dissertation adds to scientific knowledge by a set of methodologies for exploring the dynamics of protein and RNA molecules. Physically-principled simulations of the nucleosome core particle yield experimentally-testable hypotheses on chromatin structure and function.
机译:以物理为基础的计算建模和自动化技术已成为探索生物分子动力学和产生可实验检验的假设的有效方法。本文开发了一套模拟自动化技术,并给出了生物分子模拟案例研究的结果。核小体构成了真核染色质的基本组成部分。我们使用多尺度建模和离散分子动力学模拟来研究爪蟾染色质的基本单位,非洲爪蟾核小体核心颗粒的动力学。组蛋白尾巴具有柔韧性,在X射线晶体结构中分辨不佳。我们探讨了组蛋白尾巴,核心组蛋白和相关DNA的分子水平动力学如何介导单核小体规模的染色质稳定性。基于核心组蛋白残基的位置波动,我们推测冷位点,这是稳定非洲爪蟾核小体核心颗粒必不可少的一组核心组蛋白残基。我们通过设计核心组蛋白中的突变并使用美杜莎(Medusa)(一种高通量计算技术,探索由点突变引起的单核小体稳定性的变化)来探索单核小体的生物物理稳定性的变化。着丝粒特异的核小体中着丝粒特异的H3变体组蛋白(Cse4)的存在定义了线粒体基因座。然而,着丝粒特异性核小体的结构细节仍有待完全理解。我们构建了酿酒酵母着丝粒核小体的同源性模型,并生成了酿酒酵母动核延伸的生物物理原理C环模型。我们通过两个基于Web的服务器提供了自动化仿真技术:iFold(http://iFold.dokhlab.org)和iFoldRNA(http://iFoldRNA.dokhlab.org)。 iFold可使用离散的分子动力学自动模拟蛋白质折叠和展开。 iFoldRNA使用复本交换离散分子动力学模拟实现从头算RNA结构的预测。我们还演示了超过150个RNA分子的快速,准确的三维结构预测。我们使用全原子分子动力学模拟研究了两种抗癌药物顺铂和奥沙利铂之间的机理和结构差异。我们的模拟表明,顺铂和草酰铂的DNA对加成DNA的动力学和弯曲倾向产生不同的影响。这项研究表明不同的弯曲倾向在奥沙利铂和顺铂的疗效中的作用。总之,本文的研究有助于我们理解原子和中尺度水平上生物分子相互作用的机理。本论文通过一套探索蛋白质和RNA分子动力学的方法,为科学知识增添了新的活力。核小体核心粒子的物理原理模拟产生了染色质结构和功能的实验可检验的假设。

著录项

  • 作者

    Sharma, Shantanu.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Chemistry Biochemistry.;Biology Bioinformatics.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;生物物理学;
  • 关键词

  • 入库时间 2022-08-17 11:38:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号