首页> 外文学位 >Optimal Performance-Based Control of Structures against Earthquakes Considering Excitation Stochasticity and System Nonlinearity
【24h】

Optimal Performance-Based Control of Structures against Earthquakes Considering Excitation Stochasticity and System Nonlinearity

机译:考虑励磁随机性和系统非线性的基于最优性能的结构抗震控制

获取原文
获取原文并翻译 | 示例

摘要

Natural disasters are one of the constant challenges for designing new and strengthening existing infrastructures. Such hazards in the past have incurred significant loss of life and economic damage; therefore, further research is warranted in this area to enhance the health and minimize the cost of maintaining and upgrading infrastructures, improve residents’ comfort, and enable achieving higher levels of life safety. To this end, the field of hazard mitigation and control focuses on performance improvement, safety, and cost effectiveness of structures mostly through minimizing large deformations of seismic-excited structures and suppressing the damage and collapse in dynamic systems due to excessive vibrations.;Past developments in active and semi-active control designs, such as the commonly used state space controllers (e.g. linear quadratic regulator for fully observed systems and linear quadratic Gaussian for partially observed systems), consider linear feedback strategies. Meanwhile, such control strategies require linearization, and the system is usually linearized based on linear elastic properties. The control force is proportional to the state space vector and the dynamics and constraints of control devices are mainly ignored. The objective functions have restrictive forms, and are solely dependent on a second order convex function of the response variables. To overcome the aforementioned shortcomings, this dissertation develops new stochastic control algorithms for active and semi-active control strategies. This research concentrates on the development of frameworks that incorporate nonlinearity of the system, uncertainty of the excitation, and constraints and dynamics of the control device. Control designs are developed based on different objective functions such as higher order polynomials of response variables, reliability of the structure, and life cycle cost of the system considering hazard risks in seismic prone areas.;In particular, a nonlinear sliding mode control algorithm based on stochastic linearization is developed; this method supports higher order objective functions and therefore enhances the ability of designers to achieve design objectives. The proposed control algorithm is designed, optimized, and tested on a seismically excited multi-span bridge equipped with semi-active magnetorheological dampers. Next, a stochastic control algorithm is presented based on a proposed stochastic averaging method called enhanced stochastic averaging. This method conserves the nonlinear behavior of the system and the stochastic nature of the excitation in optimal control design. In order to directly minimize the probability of failures, the stochastic control algorithm is extended to a reliability-based control algorithm. These control algorithms are implemented in a system with nonlinear soil-structure interactions. Furthermore, a risk-based control methodology is developed to minimize life cycle cost of a nonlinear multi-story building subjected to seismic excitations. The findings of these proposed control methodologies are found to be superior to conventional control techniques. This doctoral research aims at filling a major gap in smart control technology in terms of conserving nonlinearity and stochasticity in control design. Moreover, they provide explicit optimization processes based on reliability and risk. Future investigations include advancing the proposed methods and applying them to different structural systems subjected to various hazard types.
机译:自然灾害是设计新的和加强现有基础设施的持续挑战之一。过去,此类危害已造成重大生命损失和经济损失;因此,有必要在这一领域进行进一步的研究,以提高健康水平并最小化维护和升级基础设施的成本,提高居民的舒适度,并实现更高水平的生命安全。为此,减轻和控制危害的领域主要是通过最小化地震激发结构的大变形并抑制由于过度振动而引起的动力系统的破坏和坍塌,来提高结构的性能,安全性和成本效益。在主动和半主动控制设计中,例如常用的状态空间控制器(例如,对于完全观测的系统,使用线性二次调节器,对于部分观测的系统,则使用线性二次高斯),请考虑线性反馈策略。同时,这样的控制策略需要线性化,并且通常基于线性弹性特性使系统线性化。控制力与状态空间矢量成比例,主要忽略了控制装置的动力学和约束。目标函数具有限制形式,并且仅取决于响应变量的二阶凸函数。为了克服上述缺点,本文针对主动和半主动控制策略开发了新的随机控制算法。这项研究集中于框架的开发,这些框架包括系统的非线性,激励的不确定性以及控制设备的约束和动力学。控制设计是根据不同的目标函数开发的,例如响应变量的高阶多项式,结构的可靠性以及考虑到地震多发地区的危险风险的系统生命周期成本等;特别是基于非线性滑模控制算法发展了随机线性化;此方法支持更高阶的目标功能,因此增强了设计人员实现设计目标的能力。所提出的控制算法是在装有半主动磁流变阻尼器的地震激励多跨桥上进行设计,优化和测试的。接下来,基于一种称为增强型随机平均的随机平均方法,提出了一种随机控制算法。该方法在最优控制设计中保留了系统的非线性行为和励磁的随机性。为了直接最小化故障的可能性,将随机控制算法扩展为基于可靠性的控制算法。这些控制算法在具有非线性土壤-结构相互作用的系统中实现。此外,开发了一种基于风险的控制方法,以使遭受地震激励的非线性多层建筑的生命周期成本降至最低。这些提议的控制方法的发现被发现优于常规控制技术。这项博士研究旨在填补智能控制技术的主要空白,以保持控制设计中的非线性和随机性。此外,它们基于可靠性和风险提供了明确的优化过程。未来的研究包括改进建议的方法并将其应用于遭受各种危害类型的不同结构系统。

著录项

  • 作者

    El Khoury, Omar.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号