首页> 外文学位 >A 0.22 THz half-period-staggered double grating circuit with a sheet electron beam: A computer simulation study.
【24h】

A 0.22 THz half-period-staggered double grating circuit with a sheet electron beam: A computer simulation study.

机译:具有片状电子束的0.22 THz半周期交错双光栅电路:计算机仿真研究。

获取原文
获取原文并翻译 | 示例

摘要

Computer simulations of a half-period-staggered double grating circuit conceived by the Y.M. Shin and L. Barnett with a sheet electron beam are performed in the terahertz frequency band. Terahertz vacuum electron devices have advantages such as high data rate communications capability and resolving power. However, there are challenging problems at the same time, e.g. high ohmic loss and poor RF energy transmission, fabrication errors, and difficult electron beam formation. When the gratings are shifted by a half-period, the EM energy is concentrated primarily in the beam channel with essentially only point contact on the vane tips, which reduce ohmic losses and enhance RF energy transmission. In a half-period-staggered double grating circuit of Professor Luhmann's laboratory, the small scale, high current density electron beam is achieved by using a sheet beam instead of the conventional circular beam. Moreover, a micro-fabrication method under investigation at UC Davis reduces fabrication errors and produces a small scale vacuum electron circuit.The dispersion relation characteristics are examined from HFSS computer simulations and analytic calculations. HFSS simulations show that the return losses are less than -5 dB in the frequency range of 0.19-0.26 THz. Therefore, in this circuit, oscillation might occurs because the return losses are more than -7dB. MAGIC-3D computer simulations with the electron beam predict the gain of more than 30 dB and 36 dB for the beam current density of 357 A/cm2 and 750 A/cm2 respectively over the frequency band of 0.20-0.27 THz.The effect on performance due to fabrication-errors such as slanted vanes and misaligned interaction circuit is investigated by the use of HFSS and MAGIC-3D computer codes. According to simulation results, the effect of slanted vanes is insignificant unless the vanes are slanted by more than 20 degree in counter clockwise direction. However, even though there are fabrication-errors, the vanes are slanted by less than 10 degree. Therefore, the effect of slanted vane is negligible.Computer simulation results show that the misaligned interaction circuit has no significant deleterious effect on the circuit performance. However, the shorter gaps between an electron beam and vanes due to misalignment might cause the deformation of the circuit and bad circuit performance. In addition, axial misplacement might have effect on the circuit performance. Therefore, simulations of effects of axial misalignment and shorter gap between an electron beam and vanes might be helpful for investigation of a half-period-staggered double vane structure as the next step.
机译:Y.M.设计的半周期交错双光栅电路的计算机模拟具有太赫兹电子束的Shin和L. Barnett在太赫兹频段执行。太赫兹真空电子器件具有诸如高数据速率通信能力和分辨能力之类的优点。但是,同时存在挑战性问题,例如高欧姆损耗和不良的射频能量传输,制造错误以及难以形成电子束。当光栅移动半个周期时,EM能量主要集中在光束通道中,而叶片尖端上基本上只有点接触,这减少了欧姆损耗并增强了RF能量传输。在卢曼教授实验室的半周期交错双光栅电路中,小尺寸,高电流密度电子束是通过使用片状束代替传统的圆形束来实现的。此外,加州大学戴维斯分校正在研究的一种微制造方法可以减少制造误差并产生小规模的真空电子电路。通过HFSS计算机仿真和分析计算来检查色散关系特性。 HFSS仿真显示,在0.19-0.26 THz的频率范围内,回波损耗小于-5 dB。因此,在该电路中,由于回波损耗大于-7dB,可能会发生振荡。用电子束进行的MAGIC-3D计算机仿真预测,在0.20-0.27 THz的频带上,电子束电流密度分别为357 A / cm2和750 A / cm2时,增益将超过30 dB和36 dB。由于制造错误,例如倾斜的叶片和未对准的相互作用电路,使用HFSS和MAGIC-3D计算机代码进行了研究。根据仿真结果,除非叶片沿逆时针方向倾斜超过20度,否则叶片的倾斜效果不明显。但是,即使存在制造错误,叶片也会倾斜不到10度。因此,倾斜叶片的影响可以忽略不计。计算机仿真结果表明,错位的交互电路对电路性能没有明显的有害影响。但是,由于未对准,电子束与叶片之间的间隙较短可能会导致电路变形和不良的电路性能。另外,轴向错位可能会影响电路性能。因此,模拟轴向错位和缩短电子束与叶片之间的间隙可能有助于下一步研究半周期交错的双叶片结构。

著录项

  • 作者

    Han, Wookyung.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Physics Fluid and Plasma.
  • 学位 M.S.
  • 年度 2009
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号