首页> 外文学位 >Bayesian Decoding of Tactile Afferents Responsible for Sensorimotor Control
【24h】

Bayesian Decoding of Tactile Afferents Responsible for Sensorimotor Control

机译:负责感觉运动控制的触觉传入的贝叶斯解码

获取原文
获取原文并翻译 | 示例

摘要

In daily activities, humans manipulate objects and do so with great precision. Empirical studies have demonstrated that signals encoded by mechanoreceptors facilitate the precise object manipulation in humans, however, little is known about the underlying mechanisms. Models used in literature to analyze tactile afferent data range from advanced---for example some models account for skin tissue properties---to simple regression fit. These models, however, do not systematically account for factors that influence tactile afferent activity. For instance, it is not yet clear whether the first derivative of force influences the observed tactile afferent spike train patterns.;In this study, I use the technique of microneurography---with the help of Dr. Birznieks---to record tactile afferent data from humans. I then implement spike sorting algorithms to identify spike occurrences that pertain to a single cell. For further analyses of the resulting spike trains, I use a Bayesian decoding framework to investigate tactile afferent mechanisms that are responsible for sensorimotor control in humans. The Bayesian decoding framework I implement is a two stage process where in a first stage (encoding model) the relationships between the administered stimuli and the recorded tactile afferent signals is established, and a second stage uses results based on the first stage to make predictions. The goal of encoding model is to increase our understanding of the mechanisms that underlie dexterous object manipulation and, from an engineering perspective, guide the design of algorithms for inferring stimulus from previously unseen tactile afferent data, a process referred to as decoding.;Specifically, the objective of the study was to devise quantitative methods that would provide insight into some mechanisms that underlie touch, as well as provide strategies through which real-time biomedical devices can be realized. Tactile afferent data from eight subjects (18 - 30 years) with no known form of neurological disorders were recorded by inserting a needle electrode in the median nerve at the wrist. I was involved in designing experimental protocols, designing mechanisms that were put in place for safety measures, designing and building electronic components as needed, experimental setup, subject recruitment, and data acquisition. Dr. Ingvars Birznieks (performed the actual microneurography procedure by inserting a needle electrode into the nerve and identifying afferent types) and Dr. Heba Khamis provided assistance with the data acquisition and experimental design. The study took place at Neuroscience Research Australia (NeuRA).;I discovered that under my encoding model, the relative contributions of the force and its derivative are 1.26 and 1.02, respectively. This suggests that the force derivative contributes significantly to the spiking behavior of SA-I tactile afferents. This is a novel contribution because it provides a quantitative result to the long standing question of whether the force derivative contributes towards SA-I tactile afferent spiking behavior. As a result, I incorporated the first derivative of force, along with the force, in the encoding models I implemented in this thesis. The decoding model shows that SA-I fibers provide sufficient information for an approximation of the force profile. Furthermore, including fast adapting tactile afferents would provide better information about the first moment of contact and last moment of contact, and thus improved decoding results. Finally I show that a renewal point process encoding model captures interspike time and stimulus features better than an inhomogeneous Poisson point process encoding model. This is useful because it is now possible to generate synthetic data with statistical structure that is similar to real SA-I data: This would enable further investigations of mechanisms that underlie SA-I tactile afferents. (Abstract shortened by ProQuest.).
机译:在日常活动中,人类可以非常精确地操纵物体。经验研究表明,由机械感受器编码的信号有助于人类中精确的物体操纵,但是,其潜在机制知之甚少。文献中用于分析触觉传入数据的模型的范围从高级(例如,某些模型说明了皮肤组织特性)到简单的回归拟合。但是,这些模型没有系统地考虑影响触觉传入活动的因素。例如,尚不清楚力的一阶导数是否会影响所观察到的触觉传入刺突模式。在这项研究中,我使用微神经​​造影技术-在Birznieks博士的帮助下-记录了触觉来自人类的数据。然后,我实现尖峰排序算法,以识别与单个单元格有关的尖峰发生。为了进一步分析所产生的尖峰信号,我使用贝叶斯解码框架来研究负责人类感觉运动控制的触觉传入机制。我实现的贝叶斯解码框架是一个两阶段的过程,其中在第一阶段(编码模型)中,建立了所管理的刺激和所记录的触觉传入信号之间的关系,第二阶段使用基于第一阶段的结果进行预测。编码模型的目的是增进我们对灵巧对象操纵基础的机制的理解,并从工程学角度指导用于从以前看不见的触觉传入数据推断刺激的算法设计,这一过程称为解码。该研究的目的是设计定量方法,以提供对触摸基础的某些机制的洞察力,并提供可以实现实时生物医学设备的策略。通过将针状电极插入腕部正中神经,记录了八名受试者(18至30岁)的触觉传入数据,这些知觉没有任何形式的神经系统疾病。我参与了设计实验协议,设计用于安全措施的机制,根据需要设计和构建电子组件,实验设置,受试者招募以及数据采集。 Ingvars Birznieks博士(通过将针形电极插入神经并确定传入的类型来执行实际的微神经造影程序),Heba Khamis博士为数据采集和实验设计提供了帮助。该研究在澳大利亚神经科学研究所(NeuRA)进行。我发现,在我的编码模型下,力及其导数的相对贡献分别为1.26和1.02。这表明力导数显着地促进了SA-1触觉传入的尖峰行为。这是一个新颖的贡献,因为它为长期存在的关于力导数是否有助于SA-1触觉传入尖峰行为的问题提供了定量的结果。结果,我将力的一阶导数与力一起纳入了本文实现的编码模型中。解码模型表明,SA-1纤维为力分布的近似提供了足够的信息。此外,包括快速适应的触觉传入将提供关于接触的第一时刻和接触的最后时刻的更好的信息,从而改善解码结果。最后,我证明了更新点过程编码模型比不均匀的泊松点过程编码模型更好地捕获了尖峰时间和刺激特征。这很有用,因为现在可以生成具有与真实SA-I数据相似的统计结构的合成数据:这将使得能够进一步研究构成SA-I触觉传入基础的机制。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Kasi, Patrick K.;

  • 作者单位

    Western Sydney University (Australia).;

  • 授予单位 Western Sydney University (Australia).;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号