首页> 外文学位 >A Human Motor Control-Inspired Control System for a Walking Hybrid Neuroprosthesis
【24h】

A Human Motor Control-Inspired Control System for a Walking Hybrid Neuroprosthesis

机译:步行混合神经假体的人体运动控制控制系统

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research is to develop a human motor control-inspired control system for a hybrid neuroprosthesis that combines functional electrical stimulation (FES) with electric motors. This device is intended to reproduce gait for persons with spinal cord injuries (SCI). Each year approximately 17,000 people suffer from an SCI in the U.S. alone, of which about 20% of them are diagnosed with complete paraplegia. Currently, there is a lot of interest in gait restoration for subjects with paraplegia but the existing technologies use either solely FES or electric motors. These two sources of actuation both have their own limitation when used alone. Recently, there have been efforts to provide a combination of the two means of actuation, FES and motors, into gait restoration devices called hybrid neuroprostheses.;In this dissertation the derivation and experimental demonstration of control systems for the hybrid neuroprosthesis are presented. Particularly, the dissertation addresses technical challenges associated with the real-time control of a FES such as nonlinear muscle dynamics, actuator dynamics, muscle fatigue, and electromechanical delays (EMD). In addition, when FES is combined with electric motors in hybrid neuroprostheses, an actuator redundancy problem is introduced. To address the actuator redundancy issue, a synergy-based control framework is derived. This synergy-based framework is inspired from the concept of muscle synergies in human motor control theory. Dynamic postural synergies are developed and used in the feedforward path of the control system for the walking hybrid neuroprosthesis. To address muscle fatigue, the stimulation levels are gradually increased based on a model-based fatigue estimate. A dynamic surface control technique, modified with a delay compensation term, is used to address the actuator dynamics and EMD in the control derivation. A Lyapunov-based stability approach is used to derive the controllers and guarantee their stability. The outcome of this research is the development of a human motor control-inspired control framework for the hybrid neuroprosthesis where both FES and electric motors can be simultaneously coordinated to reproduce gait. Multiple experiments were conducted on both able-bodied subjects and persons with SCI to validate the derived controllers.
机译:这项研究的目的是为混合动力神经假体开发一种结合人体功能控制的控制系统,该系统将功能性电刺激(FES)与电动机相结合。该设备旨在为脊髓损伤(SCI)的人重现步态。仅在美国,每年约有17,000人患有SCI,其中约20%被诊断为完全性截瘫。当前,对于截瘫患者的步态恢复有很多兴趣,但是现有技术仅使用FES或电动机。单独使用时,这两种驱动源都有其自身的局限性。近来,人们一直努力将两种致动方式,即FES和运动,结合在一起,用于步态恢复装置中,称为混合神经假体。本论文提出了混合神经假体控制系统的推导和实验演示。特别是,本文解决了与FES的实时控制相关的技术挑战,例如非线性肌肉动力学,致动器动力学,肌肉疲劳和机电延迟(EMD)。另外,当在混合神经假体中将FES与电动机结合时,会引起执行器冗余问题。为了解决致动器冗余问题,导出了基于协同作用的控制框架。这种基于协同作用的框架是受到人体运动控制理论中肌肉协同作用概念的启发。动态姿势协同作用得到发展,并在行走混合神经假体控制系统的前馈路径中使用。为了解决肌肉疲劳,基于基于模型的疲劳估计,逐渐增加刺激水平。动态表面控制技术(用延迟补偿项修改)用于解决控制推导中的执行器动力学和EMD。基于Lyapunov的稳定性方法可用于导出控制器并保证其稳定性。这项研究的结果是为混合神经假体开发了一种以人类运动控制为灵感的控制框架,该框架可以同时协调FES和电动机以重现步态。对健全的受试者和SCI患者进行了多次实验,以验证派生的控制器。

著录项

  • 作者

    Alibeji, Naji A.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Mechanical engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号