首页> 外文学位 >Macroscopic Modeling of a One-Dimensional Electrochemical Cell using the Poisson-Nernst-Planck Equations
【24h】

Macroscopic Modeling of a One-Dimensional Electrochemical Cell using the Poisson-Nernst-Planck Equations

机译:使用Poisson-Nernst-Planck方程对一维电化学电池进行宏观建模

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the one-dimensional equations, numerical method and simulations of a model to characterize the dynamical operation of an electrochemical cell. This model extends the current state-of-the art in that it accounts, in a primitive way, for the physics of the electrolyte/electrode interface and incorporates diffuse-charge dynamics, temperature coupling, surface coverage, and polarization phenomena. The one-dimensional equations account for a system with one or two mobile ions of opposite charge, and the electrode reaction we consider (when one is needed) is a one-electron electrodeposition reaction. Though the modeled system is far from representing a realistic electrochemical device, our results show a range of dynamics and behaviors which have not been observed previously, and explore the numerical challenges required when adding more complexity to a model. Furthermore, the basic transport equations (which are developed in three spatial dimensions) can in future accomodate the inclusion of additional physics, and coupling to more complex boundary conditions that incorporate two-dimensional surface phenomena and multi-rate reactions.;In the model, the Poisson-Nernst-Planck equations are used to model diffusion and electromigration in an electrolyte, and the generalized Frumkin-Butler-Volmer equation is used to model reaction kinetics at electrodes. An energy balance equation is derived and coupled to the diffusion-migration equation. The model also includes dielectric polarization effects by introducing different values of the dielectric permittivity in different regions of the bulk, as well as accounting for surface coverage effects due to adsorption, and finite size "crowding", or steric effects. Advection effects are not modeled but could in future be incorporated. In order to solve the coupled PDE's, we use a variable step size second order scheme in time and finite differencing in space. Numerical tests are performed on a simplified system and the scheme's stability and convergence properties are discussed. While evaluating different methods for discretizing the coupled flux boundary condition, we discover a thresholding behaviour in the adaptive time stepper, and perform additional tests to investigate it. Finally, a method based on ghost points is chosen for its favorable numerical properties compared to the alternatives. With this method, we are able to run simulations with a large range of parameters, including any value of the nondimensionalized Debye length epsilon.;The numerical code is first used to run simulations to explore the effects of polarization, surface coverage, and temperature. The code is also used to perform frequency sweeps of input signals in order to mimic impedance spectroscopy experiments. Finally, in Chapter 5, we use our model to apply ramped voltages to electrochemical systems, and show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking (polarized) electrodes, and electrolytes with background charge. Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. No general theory of linear-sweep voltammetry is available, however, for unsupported electrolytes and for other situations where diffuse charge effects play a role. We show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking electrodes, and membranes with fixed background charge. The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, but capacitive charging of the double layers is also studied, for early time transients at reactive electrodes and for non-reactive blocking electrodes. The final chapter highlights the role of diffuse charge in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.
机译:本文提出了一维方程,数值方法和模型模拟,以表征电化学电池的动态运行。该模型以一种原始的方式解释了电解质/电极界面的物理特性,并结合了扩散电荷动力学,温度耦合,表面覆盖和极化现象,从而扩展了当前的技术水平。一维方程解释了一个带有两个或两个带相反电荷的移动离子的系统,而我们认为(需要时)的电极反应是单电子电沉积反应。尽管建模系统远不能代表现实的电化学装置,但我们的结果显示了以前未曾观察到的一系列动力学和行为,并探索了在为模型增加更多复杂性时所需的数值挑战。此外,基本的输运方程式(在三个空间维度上发展)可以在将来适应附加的物理学,并耦合到包含二维表面现象和多速率反应的更复杂的边界条件。 Poisson-Nernst-Planck方程用于模拟电解质中的扩散和电迁移,广义Frumkin-Butler-Volmer方程用于模拟电极的反应动力学。导出能量平衡方程,并将其耦合到扩散迁移方程。该模型还通过在块体的不同区域引入不同的介电常数值来包含介电极化效应,并考虑了由于吸附引起的表面覆盖效应以及有限尺寸的“拥挤”或空间效应。对流效应未建模,但将来可能会纳入。为了解决耦合的PDE,我们在时间上使用了可变步长的二阶方案,在空间上采用了有限的差分。在简化的系统上进行了数值测试,并讨论了该方案的稳定性和收敛性。在评估离散化耦合磁通边界条件的不同方法时,我们发现了自适应时间步进器中的阈值行为,并进行了额外的测试来对其进行研究。最后,与其他方法相比,选择了基于幻影点的方法,因为它具有良好的数值特性。使用这种方法,我们可以使用各种参数运行模拟,包括无量纲的德拜长度epsilon的任何值。;首先使用数字代码运行模拟以探索极化,表面覆盖率和温度的影响。该代码还用于执行输入信号的频率扫描,以模拟阻抗谱实验。最后,在第5章中,我们使用模型将斜坡电压施加到电化学系统,并显示了液体和固体薄膜,带有阻塞(极化)电极的电池以及带有背景电荷的电解质的理论和模拟电流-电压曲线。线性扫描和循环伏安技术是电化学家的重要工具,在工程中具有多种应用。伏安法经典地用Randles-Sevcik方程处理,该方程假定为电中性支持电解质。但是,没有线性扫描伏安法的一般理论可用于无载体的电解质以及其他弥散电荷效应起作用的情况。我们显示了液体和固体薄膜,带阻挡电极的电池以及具有固定背景电荷的膜的理论和模拟电流-电压曲线。该分析着重于法拉第反应与扩散电荷动力学的耦合,但是还研究了双层的电容性充电,以用于反应性电极处的早期瞬态和非反应性阻断电极。最后一章重点介绍了在伏安法中扩散电荷的作用,并说明了可以使用简单的分析表达式来近似估算哪些方案以及需要更仔细考虑的方案。

著录项

  • 作者

    Yan, David.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering.;Mathematics.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号