首页> 外文学位 >Physical Property Modeling of Solvent-Based Carbon Capture Processes with Uncertainty Quantification and Validation with Pilot Plant Data
【24h】

Physical Property Modeling of Solvent-Based Carbon Capture Processes with Uncertainty Quantification and Validation with Pilot Plant Data

机译:基于溶剂的碳捕集过程的物理性质建模,具有不确定性量化和中试工厂数据的验证

获取原文
获取原文并翻译 | 示例

摘要

The US DOE's Carbon Capture Simulation Initiative (CCSI) has a strong focus on the development of state of the art process models to accelerate the development and commercialization of post-combustion carbon capture system technologies. One of CCSI's goals is the development of a rigorous process model that may serve as a definitive reference for benchmarking the performance of solvent-based CO2 capture systems, using aqueous monoethanolamine (MEA) as a baseline. Among the requirements of this process model is the development of its component submodels (e.g. physical properties) from relevant bench-scale data. Moreover, the process model must take into account parametric uncertainty in the submodels and be validated with both steady-state and dynamic process data collected from a pilot plant over a wide range of operating conditions. This dissertation is focused on two major aspects of the development of this MEA solvent model, namely the development of the physical property models for the MEA-H2O-CO2 system and the validation of the steady-state model with large-scale pilot plant data from the National Carbon Capture Center (NCCC) in Alabama.;The physical property modeling work may be divided into standalone property models and the integrated thermodynamic framework of the system. Viscosity, density, and surface tension models have been developed individually by calibrating parameters, for an empirical model of a given form, to fit experimental data from the open literature. The thermodynamic framework has been developed within Aspen PlusRTM, using the e-NRTL model as a starting point, by regressing model parameters to fit vapor-liquid equilibrium (VLE), heat capacity, and heat of absorption data. A parameter selection methodology using an information criterion has been implemented for reducing the model complexity. A methodology for uncertainty quantification (UQ) has also been included for all property models, in which Bayesian inference is used to update distributions of model parameters in light of experimental data.;The physical property models, along with separately developed mass transfer, hydraulic, and reaction kinetics models, are incorporated into the overall process model. This model has been validated with steady-state data from NCCC for a total of 23 test runs, and the model predictions of absorber and stripper column performance have been shown to match the experimental data with satisfactory fit. The parametric uncertainty from the process submodels are propagated through the process model in order to study the resulting uncertainty in the process variables of the system, notably the CO2 capture efficiency of the absorber and the amount of CO2 regenerated in the stripper. Concurrent sensitivity studies have been performed, which provide insight into the relative contributions of the uncertainty in particular submodels to the overall process uncertainty.;Finally, some ongoing work related to the solvent model project is also presented. In one project, a methodology for scale-up uncertainty quantification is being developed, in which the effect of radial liquid distribution on column performance is estimated and preliminary comparison of this model to process data is made. The final project involves using the completed process model for planning a second MEA campaign at NCCC, which is ongoing at the time of the writing of this dissertation. In this work, the estimated uncertainty in absorber efficiency is quantified as a function of key manipulated variables by propagating the submodel parametric uncertainty through the absorber model over the range of input variables. An initial set of test conditions has been designed with the objective of choosing points for which the estimated uncertainty is relatively high, while maintaining a spread of the conditions throughout the input space. A methodology has been proposed for using Bayesian inference to update the parametric uncertainty as the data are collected.
机译:美国能源部的碳捕集模拟计划(CCSI)着重关注最新工艺模型的开发,以加速燃烧后碳捕集系统技术的开发和商业化。 CCSI的目标之一是开发严格的过程模型,该模型可以作为基准,以单乙醇胺水溶液(MEA)为基准对基于溶剂的CO2捕集系统的性能进行基准测试。该过程模型的要求之一是根据相关的基准规模数据开发其组件子模型(例如物理特性)。此外,过程模型必须考虑子模型中的参数不确定性,并且必须通过在广泛的运行条件下从中试工厂收集的稳态和动态过程数据进行验证。本文的研究集中在该MEA溶剂模型开发的两个主要方面,即MEA-H2O-CO2系统物理性能模型的开发以及使用来自中试的大规模中试工厂数据对稳态模型的验证。物理特性建模工作可以分为独立的特性模型和系统的集成热力学框架。粘度,密度和表面张力模型已通过校准参数(针对给定形式的经验模型)来单独开发,以适应公开文献中的实验数据。热力学框架是在Aspen PlusRTM内开发的,使用e-NRTL模型作为起点,通过回归模型参数以适应气液平衡(VLE),热容量和吸收热数据。已经实施了使用信息准则的参数选择方法,以降低模型的复杂性。所有属性模型还包括不确定性量化方法(UQ),其中使用贝叶斯推理根据实验数据更新模型参数的分布。物理属性模型以及单独开发的传质,水力,动力学模型和反应动力学模型被合并到整个过程模型中。该模型已通过NCCC的稳态数据进行了总共23次测试验证,并且吸收塔和汽提塔性能的模型预测已显示出与实验数据相符且拟合良好。来自过程子模型的参数不确定性通过过程模型传播,以研究系统过程变量中所产生的不确定性,特别是吸收塔的CO2捕集效率和汽提塔中再生的CO2量。进行了并行敏感性研究,可以深入了解特定子模型中不确定性对整个过程不确定性的相对贡献。最后,还介绍了一些与溶剂模型项目有关的正在进行的工作。在一个项目中,正在开发一种用于放大不确定性定量的方法,其中估算径向液体分布对色谱柱性能的影响,并对该模型与过程数据进行初步比较。最后的项目涉及使用完成的过程模型来计划NCCC的第二次MEA活动,该活动在撰写本文时仍在进行中。在这项工作中,通过在输入变量的范围内通过吸收器模型传播子模型参数不确定性,可以将估计的吸收器效率不确定性作为关键操作变量的函数进行量化。设计了一组初始测试条件,其目的是选择估计不确定度相对较高的点,同时保持条件在整个输入空间中的分布。已经提出了一种使用贝叶斯推断来在收集数据时更新参数不确定性的方法。

著录项

  • 作者

    Morgan, Joshua Cole.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号