首页> 外文学位 >Scaled-Up Production and Transport Applications of Graphitic Carbon Nanomaterials
【24h】

Scaled-Up Production and Transport Applications of Graphitic Carbon Nanomaterials

机译:石墨碳纳米材料的规模化生产和运输应用

获取原文
获取原文并翻译 | 示例

摘要

Graphitic carbon nanomaterials enhance the performance of engineered systems for energy harvesting and storage. However, commercial availability remains largely cost-prohibitive due to technical barriers to mass production. This thesis examines both the scaled-up production and energy transport applications of graphitic materials. Cost driven-production of graphitic petals is developed, carbon nanotube array thermal interface materials enhance waste heat energy harvesting, and microsupercapacitors are visually examined using a new electroreflectance measurement method.;Graphitic materials have previously been synthesized using batch-style processing methods with small sample sizes, limiting their commercial viability. In order to increase production throughput, a roll-to-roll radio-frequency plasma chemical vapor deposition method is employed to continuously deposit graphitic petals on carbon fiber tow. In consideration of a full production framework, efficient and informative characterization methods in the form of electrical resistance and electrochemical capacitance are highlighted. To co-optimize the functional characteristics of the material, the processing conditions are comprehensively varied using a data-driven predictive design of experiments method. Repeatable and reliable production of graphitic materials will enable a host of creative graphene-based devices to emerge into the marketplace. Two such applications are discussed in the remaining chapters.;Waste heat is most efficiently harvested at high temperatures, such as vehicle exhaust systems near 600°C. However, the resistance to heat flux at the interfaces between the harvesting device and its surroundings is detrimental to the system-level performance. To study the performance of thermal interface materials up to 700°C, a reference bar measurement method was designed. Design considerations are discussed and compared to past implementations, particularly regarding radiation heat flux and thermal expansion at these elevated temperatures. The microscale roughness of the contacting measurement surface is fully characterized, as it fundamentally affects the resulting thermal interface resistance. This comprehensive method for determining thermal interface resistance at high temperatures includes the physical equipment, data acquisition system, and data analysis method.;Thermomechanical evaluation of carbon nanotube arrays up to 700°C has shown that the arrays provide mechanical flexibility to accommodate thermal expansion in a thermomechanically mismatched interface. To demonstrate the application of the arrays for improving energy generation, they were evaluated in conjunction with a thermoelectric module. The system-level efficiency increases significantly when a carbon nanotube array is applied to the hot side of the thermoelectric module. Additional materials characterization suggests the presence of a strong thermal connection between the carbon nanotubes and their catalyst layers, due to covalent bonding between them. In another application of harvesting waste heat, the carbon nanotube arrays increase the performance of a thermo-magnetically actuated shuttle device for solar photovoltaic cells due to decreased thermal interface resistance.;Vertically-oriented graphitic petals have previously enhanced supercapacitor power density. Here, a spatiotemporal characterization method is developed and utilized to study ageing phenomena in microsupercapacitor electrodes. The electroreflectance method captures images of charge accumulation in the electrodes at varying states during each charge-discharge cycle. The method was exploited by imaging each an ideal device and a device with defects over an extended period of over four million cycles. The charge accumulation patterns over the ageing period relate to the physical transport behavior. During a single discharge cycle, one may visually observe the electrons drifting out of the electrode.;Overall, the investigations herein determine the following. Continuous production of graphitic petals is possible and is optimized by considering the effect of plasma conditions on the resulting functional performance of the material. Thermal interface resistance may be measured at high temperatures in order to understand the viability of interface materials for energy harvesting applications. Carbon nanotube array thermal interface materials lead to increased energy generation from thermoelectric modules. Spatial electroreflectance measurements of microsupercapacitors lead to observation of decreased physical wetting between the electrode and electrolyte, impacting device performance. Looking forward, creative application of graphitic carbon nanomaterials, coupled with cost-driven production capability, will launch them into the commercial marketplace.
机译:石墨碳纳米材料增强了能量收集和存储工程系统的性能。然而,由于对批量生产的技术壁垒,商业可用性在很大程度上仍然抑制了成本。本文研究了石墨材料的规模化生产和能量传输应用。开发了成本驱动的石墨花瓣生产,碳纳米管阵列热界面材料增强了废热能的收集,并使用一种新的电反射率测量方法对微型超级电容器进行了目视检查。尺寸,限制了它们的商业可行性。为了增加生产量,采用卷对卷射频等离子体化学气相沉积法将石墨花瓣连续沉积在碳纤维丝束上。考虑到完整的生产框架,重点介绍了电阻和电化学电容形式的有效且信息丰富的表征方法。为了共同优化材料的功能特性,使用数据驱动的实验预测设计方法全面改变了加工条件。石墨材料的可重复且可靠的生产将使大量基于石墨烯的创新设备进入市场。其余各章讨论了两种这样的应用程序:废热在高温下最有效地收集,例如600°C附近的汽车排气系统。但是,在收割设备及其周围环境之间的界面处对热通量的阻力不利于系统级性能。为了研究高达700°C的热界面材料的性能,设计了一种参考棒测量方法。讨论了设计注意事项并将其与过去的实现方式进行了比较,尤其是在这些高温下的辐射热通量和热膨胀方面。接触式测量表面的微观粗糙度被充分表征,因为它从根本上影响所得的热界面电阻。这种用于确定高温下热界面电阻的综合方法包括物理设备,数据采集系统和数据分析方法。高达700°C的碳纳米管阵列的热机械评估表明,该阵列提供了适应热膨胀的机械灵活性。热机械不匹配的界面。为了演示阵列在改善能量产生中的应用,结合热电模块对它们进行了评估。当将碳纳米管阵列应用于热电模块的热端时,系统级效率将显着提高。附加的材料表征表明,由于碳纳米管与其催化剂层之间的共价键合,它们之间存在牢固的热连接。在收集废热的另一种应用中,碳纳米管阵列由于减小的热界面电阻而提高了用于太阳能光伏电池的热磁致动往复装置的性能。垂直取向的石墨花瓣先前已经提高了超级电容器的功率密度。在这里,时空表征方法被开发并用于研究微型超级电容器电极中的老化现象。电反射法在每个充放电循环期间捕获处于变化状态的电极中电荷积聚的图像。通过对每一个理想的设备和一个有缺陷的设备进行超过四百万次循环的成像,来开发该方法。老化期间的电荷积累模式与物理传输行为有关。在单个放电周期中,可以目视观察到电子从电极中漂移出来。总的来说,本文的研究确定了以下内容。可以连续生产石墨花瓣,并且可以通过考虑等离子体条件对所得材料功能性能的影响来进行优化。可以在高温下测量热界面电阻,以了解用于能量收集应用的界面材料的可行性。碳纳米管阵列热界面材料导致热电模块产生的能量增加。微型超级电容器的空间电反射率测量导致观察到电极和电解质之间的物理润湿降低,从而影响器件性能。展望未来,石墨碳纳米材料的创新应用以及成本驱动的生产能力将使它们进入商业市场。

著录项

  • 作者

    Saviers, Kimberly R.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Nanotechnology.;Mechanical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号