首页> 外文学位 >Understanding and Exploiting Electroadhesion of Human Fingertips for High Performance Surface Haptic Applications
【24h】

Understanding and Exploiting Electroadhesion of Human Fingertips for High Performance Surface Haptic Applications

机译:理解和开发用于高性能表面触觉应用的人类指尖的电粘附

获取原文
获取原文并翻译 | 示例

摘要

The aim of this dissertation is to make sense of nearly a century and a half's worth of observations concerning skin based electroadhesion phenomena. While this is a noble goal in and of itself, further motivation of this work is drawn from fact that the electroadhesive effect is increasingly being utilized in modern day practical applications, and appears poised for integration into the now ubiquitous touchscreen interface. It was with each of these contexts in mind that I set about resolving decades of disparate observational reports and various measurements in the literature with one another. In the course of this reckoning I was able to construct a simple, yet flexible, working model which seemingly brought everything together, and which led to predictions of future capabilities of the effect. It is my aim that the model and experiments given here will essentially show how aspects of electroadhesion may not just be better understood, but may be, in the end, actively exploited for practical finger based applications.;I begin by demonstrating the previously overlooked DC capabilities of electroadhesion, based on work performed in the 1920s by Johnsen and Rahbek, which is capable of producing forces on the finger an order of magnitude greater than those previously reported in the haptics literature. To model the ability of electroadhesion to generate such high force (especially at DC), I propose a unified force model, based on lumped electrical impedance parameters and an interfacial air gap, and resolve this model with those in previous reports. In this process I briefly discuss the background and specifics of the Johnsen-Rahbek effect, and include friction measurements made with my own electroadhesive surface and experimental apparatus.;Expanding from this initial DC understanding of the effect, I then set about characterizing two different variable friction electroadhesive displays using careful electrical and electrochemical impedance measurements across a broad range of frequencies. I qualitatively and quantitatively examine the properties of the skin, body, surface coating, and various electrode interface impedances in isolation using different contact interface conditions, measurement types, and custom electrical hardware. My lumped series impedance model is filled out and used to explain how all impedances are related during normal usage. The linearity of this model is shown to be valid under certain assumptions, such as high applied frequencies or small applied currents, and speculation as to the physical mechanisms underlying each impedance element is given. This analysis unambiguously verifies and expands upon the existence of the hypothesized key electrical system parameter: the air gap impedance (or sliding interfacial impedance). This parameter represents a large increase (100- 1000%) in overall impedance observed when a finger is sliding versus when it is stationary which cannot be explained by other electrical impedance measures and which vanishes again should the finger come to rest.;Finally, I report on an extremely high bandwidth electroadhesive approach to controlling friction forces on sliding fingertips which is capable of producing vibrations across an exceedingly broad range of tactile, audible, and ultrasonic frequencies. Vibrations on the skin can be felt directly, and vibrations in the air can be heard emanating from the finger. Additionally, I present evidence of how the interfacial air gap voltage is primarily responsible for the induced electrostatic attraction force underlying the electroadhesion effect. I develop an experimental apparatus capable of recording friction forces up to a frequency of 6 kHz, and use it to characterize my two electroadhesive systems, both of which exhibit flat current-to-force magnitude responses throughout the measurement range. These systems use custom electrical hardware to modulate a high frequency current and apply surprisingly low distortion, broadband forces to the skin. Recordings of skin vibrations with a laser Doppler vibrometer demonstrate the tactile capabilities of the system, while recordings of vibrations in the air with a MEMS microphone quantify the audible response and reveal the existence of ultrasonic forces applied to the skin via electronic friction modulation.
机译:本文的目的是弄清关于基于皮肤的电粘附现象的近半个世纪的观察价值。尽管这本身就是一个崇高的目标,但这项工作的进一步动机是从这样的事实出发的:在现代的实际应用中越来越多地使用电粘附效应,并且似乎已经准备好集成到现在无处不在的触摸屏界面中。考虑到这些情况中的每一个,我着手解决彼此不同的数十年的观察报告和文献中的各种测量方法。在此过程中,我能够构建一个简单但灵活的工作模型,该模型似乎将所有内容整合在一起,从而对效果的未来功能进行了预测。我的目标是,此处给出的模型和实验将本质上显示出如何不仅可以更好地理解电粘附的各个方面,而且最终可以积极地将其用于实际的基于手指的应用。;我首先展示了先前被忽略的DC。基于Johnsen和Rahbek在1920年代所做的工作,具有的电粘附能力,其能够在手指上产生的力要比以前在触觉文献中报道的力大一个数量级。为了模拟电粘附产生如此高的力(特别是在直流电下)的能力,我基于集总的电阻抗参数和界面气隙提出了一个统一的力模型,并用以前的报告对此模型进行了解析。在此过程中,我简要讨论了约翰森-拉赫贝克效应的背景和特点,并包括了用我自己的电粘附面和实验设备进行的摩擦测量。从对效应的最初的直流理解出发,我着手表征两个不同的变量摩擦电粘附显示器,在广泛的频率范围内使用仔细的电阻抗和电化学阻抗测量。我定性和定量地使用不同的接触界面条件,测量类型和定制的电气硬件来隔离地检查皮肤,身体,表面涂层和各种电极界面阻抗的特性。我的集总串联阻抗模型已填写并用于解释正常使用期间所有阻抗之间的关系。该模型的线性被证明在某些假设下是有效的,例如高施加频率或小施加电流,并且给出了有关每个阻抗元件背后的物理机制的推测。该分析明确地验证并扩展了假设的关键电气系统参数:气隙阻抗(或滑动界面阻抗)。该参数表示当手指滑动时与静止时相比,观察到的总阻抗有很大的增加(100-1000%),这无法用其他电阻抗措施来解释,并且如果手指静止不动又消失了。报告了一种用于控制滑动指尖上摩擦力的超高带宽电胶方法,该方法能够在触觉,听觉和超声频率范围内产生振动。可以直接感觉到皮肤上的振动,并且可以听到手指发出的空气振动。此外,我提供了界面气隙电压如何主要负责电粘附效应下的感应静电引力的证据。我开发了一种实验设备,该设备能够记录高达6 kHz的摩擦力,并用它来表征我的两个电粘附系统,这两个系统在整个测量范围内均表现出平坦的电流-力幅度响应。这些系统使用定制的电气硬件来调制高频电流,并对皮肤施加出乎意料的低失真,宽带力。激光多普勒振动计记录的皮肤振动表明了系统的触觉能力,而MEMS麦克风记录的空气中的振动则量化了听觉响应,并揭示了通过电子摩擦调制施加到皮肤上的超声波力的存在。

著录项

  • 作者

    Shultz, Craig Daniel.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Mechanical engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号