首页> 外文学位 >Residual-Based Large Eddy Simulation of Turbulent Flows using Divergence-Conforming Discretizations
【24h】

Residual-Based Large Eddy Simulation of Turbulent Flows using Divergence-Conforming Discretizations

机译:基于散度符合离散化的基于残差的湍流大涡模拟

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, a class of methods which combines divergence-conforming discretizations with residual-based subgrid modeling for large eddy simulation of turbulent flows is introduced. These methods fall within two frameworks: residual-based variational multiscale methods and residual-based eddy viscosities. These methods utilize variationally-consistent formulations for the fine-scale velocities in order to construct subgrid-scale models based on the coarse-scale residual. The result is an LES methodology that responds naturally to spatially- and temporally-varying turbulence. Numerical results demonstrate that these new methods demonstrate proper behavior for homogeneous turbulence and outperform classical LES models for transitional flows and wall-bounded turbulent flows. Furthermore, the resulting formulations contain no "tunable" parameters, and thus extend generally across various classes of flow.;Additionally, a differential variational multiscale method in which the unresolved fine-scales are approximated element-wise using a discontinuous Galerkin method is presented and examined. Stability and convergence results for the methodology as applied to the scalar transport problem are established, and it is proven that the method exhibits optimal convergence rates in the SUPG norm and is robust with respect to the Peclet number if the discontinuous subscale approximation space is sufficiently rich. The method is applied to isogeometric NURBS discretizations of steady and unsteady transport problems, and the corresponding numerical results demonstrate that the method is stable and accurate in the advective limit even when low-order discontinuous subscale approximations are employed. Based on these promising results, a class of differential subgrid vortex models for large eddy simulation of turbulent flows is proposed.;Finally, the underlying discretization utilized by the simulations here offers the opportunity to develop efficient new geometric multigrid linear solvers. In this regard, a geometric multigrid methodology for the solution of matrix systems associated with isogeometric compatible discretizations of the generalized Stokes and Oseen problems is presented. The methodology provably yields a pointwise divergence-free velocity field independent of the number of pre-smoothing steps, post-smoothing steps, grid levels, or cycles in a V-cycle implementation. The methodology relies upon Scwharz-style smoothers in conjunction with specially defined overlapping subdomains that respect the underlying topological structure of the generalized Stokes and Oseen problems. Numerical results in both two- and three-dimensions demonstrate the robustness of the methodology through the invariance of convergence rates with respect to grid resolution and flow parameters for the generalized Stokes problem as well as the generalized Oseen problem, provided it is not advection-dominated.
机译:本文介绍了一类将发散相符离散化与基于残差的子网格建模相结合的湍流大涡模拟方法。这些方法属于两个框架:基于残差的变分多尺度方法和基于残差的涡流粘度。这些方法利用精细尺度速度的变化一致公式,以便基于粗尺度残差构建亚网格尺度模型。结果是LES方法可以自然响应时空变化的湍流。数值结果表明,这些新方法证明了均质湍流的正确行为,并且优于传统的LES模型的过渡流和有边界湍流。此外,所得制剂不包含“可调”参数,因此通常扩展到各种类型的流。此外,提出了一种微分变分多尺度方法,其中使用不连续的Galerkin方法逐个近似地解析了未解析的精细尺度,并且检查。建立了该方法应用于标量输运问题的稳定性和收敛性结果,并且证明了该方法在SUPG范数中显示出最佳收敛速度,并且如果不连续子尺度近似空间足够丰富,则相对于Peclet数是鲁棒的。将该方法应用于稳态和非稳态输运问题的等几何NURBS离散化,相应的数值结果表明,即使采用低阶不连续子尺度近似,该方法在对流极限中也是稳定且准确的。基于这些有希望的结果,提出了用于湍流大涡模拟的一类差分亚网格涡模型。最后,在此利用的基本离散化为开发高效的新型几何多网格线性求解器提供了机会。在这方面,提出了一种几何多网格方法,用于解决与广义Stokes和Oseen问题的等几何兼容离散化相关的矩阵系统。该方法可证明产生一个逐点无散度的速度场,而与V循环实施中的预平滑步骤,后平滑步骤,网格水平或周期数无关。该方法依赖于Scwharz风格的平滑器,以及专门定义的重叠子域,这些子域遵守广义Stokes和Oseen问题的基本拓扑结构。二维和三维方面的数值结果都证明了该方法的鲁棒性,其前提是广义对流斯托克斯问题以及广义Oseen问题的收敛速度相对于网格分辨率和流量参数不变,只要它不是以对流为主。

著录项

  • 作者

    Coley, Christopher Joel.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号