首页> 外文学位 >Atom-Probe Tomographic Investigations of a Precipitation-Strengthened HSLA-115 Steel and a Ballistic-Resistant 10 wt. % Ni Steel for Naval Applications
【24h】

Atom-Probe Tomographic Investigations of a Precipitation-Strengthened HSLA-115 Steel and a Ballistic-Resistant 10 wt. % Ni Steel for Naval Applications

机译:沉淀强化的HSLA-115钢和防弹10 wt。的原子探针层析成像研究用于海军的%Ni钢

获取原文
获取原文并翻译 | 示例

摘要

High performance structural materials are needed for Naval applications which require an excellent combination of yield strength, low-temperature impact toughness, ductility, ballistic-resistance, and weldability. This research investigates precipitation-strengthened HSLA-115 steels and ballistic-resistant 10 wt. % Ni steels, which have emerged as promising alternatives to the widely used HSLA-100 steels for Naval applications.;HSLA-115 is a Cu-bearing high-strength low-carbon martensitic steel and has been used in the flight deck of the recently built U.S. Navy CVN-78 aircraft carrier. It is typically used in conditions with overaged Cu precipitates, to obtain acceptable impact toughness and ductility at 115 ksi (793 MPa) yield strength. However, overaging of Cu precipitates limits its strength and applications. This research demonstrates that aging at 550 °C facilitates the co-precipitation of sub-nanometer sized M2C carbides and Cu precipitates in high number density (∼1023 m-3) in HSLA-115. 3-D atom-probe tomography (APT) investigation reveals that Cu precipitates form first, followed by the nucleation of M2C carbides, which are co-located with Cu precipitates and are distributed heterogeneously at lath-boundaries and dislocations, indicating heterogeneous nucleation of M2C. Carbon redistribution during quenching (following the austenitization) and subsequent aging at 550 °C is followed using APT. Segregation of C (3-6 at. % C) is observed at martensitic lath-boundaries in the as-quenched and 0.12 h aged conditions. On further aging, C redistributes, forming cementite and M 2C carbides, whose composition and morphology evolves with aging time. Precipitation kinetics of M2C carbides is intertwined with Cu precipitates; temporal evolution of Cu precipitates and M2C carbides is characterized in terms of their mean radii, number densities, and volume fractions and correlated with the bulk mechanical properties.;Precipitation of M2C carbides offsets the softening due to overaging of Cu precipitates and tempering of the martensitic matrix. This results in an extended yield strength plateau, compared to alloys relying solely on Cu precipitation strengthening (for example, NUCu-140 steels) and is highly beneficial as impact toughness improves significantly in overaged conditions with respect to Cu precipitates. Optimum mechanical properties (yield strength 141 ksi or 972.1 MPa, elongation to failure 24.8 %, and impact toughness 188.0 J at --18 °C) are attained after 3 h aging at 550 °C. Incorporating finely dispersed M2C carbides with Cu precipitates, thus provides a promising pathway for use of Cu-bearing Naval HSLA-115 steels in higher strength applications, while still meting toughness and ductility requirements.;Low-carbon 10 wt. % Ni steels are optimally processed via a multi-step intercritical Quench Lamellarizing Tempering (QLT)-treatment to form a fine dispersion of thermally stable Ni-enriched austenite in a tempered martensitic matrix. Deformation-induced martensitic transformation of this austenite is key to its superior overall mechanical properties, specifically ballistic resistance over HSLA-100 steels. This research elucidates the basic physical principles controlling the thermal stability and kinetics of Ni-stabilized austenite, formed during the QLT-treatment. The role of Ni-enriched austenite and fresh martensitic regions, inherited from the first isothermal intercritical step (L) at 650 °C, in forming thermally stable austenite during the second isothermal intercritical step (T) at 590 °C is highlighted using dilatometry, synchrotron X-ray diffraction, 3-D atom-probe tomography (APT), and thermodynamic and kinetic modeling using ThermoCalc and Dictra. Results indicate the growth of nm-thick austenite layers during T-step tempering (predominantly in the Ni-enriched fresh martensitic regions), with austenite retained from L-step acting as a nucleation template. Thermal stability of austenite is estimated by predicting its martensite-start (Ms) temperature, using the approach formulated by Ghosh and Olson. This approach is particularly useful as empirical relations cannot be extrapolated for the highly Ni-enriched austenite investigated in the present study. Co-located and mixed MC/M2C-type carbides (M is Mo, Cr, V), comprising of a M2C carbide shell and a MC carbide core are observed after isothermal tempering at both 590 and 650 °C. Since MC carbides are inherited from the as-quenched condition, the nucleation of M2C-type carbides is likely assisted by the MC carbides during tempering at these temperatures. (Abstract shortened by ProQuest.).
机译:海军应用需要高性能的结构材料,这些材料需要将屈服强度,低温冲击韧性,延展性,耐冲击性和可焊接性完美结合。这项研究调查了沉淀强化的HSLA-115钢和防弹10 wt。 %Ni钢,已成为海军上广泛使用的HSLA-100钢的有希望的替代品。; HSLA-115是一种含铜高强度低碳马氏体钢,已被用于最近的驾驶舱建造了美国海军CVN-78航母。它通常用于含过量铜沉淀物的条件下,以在115 ksi(793 MPa)屈服强度下获得可接受的冲击韧性和延展性。但是,Cu沉淀物的过时效会限制其强度和应用。这项研究表明,在550°C下时效促进了HSLA-115中亚纳米尺寸的M2C碳化物和Cu沉淀物在高数密度(〜1023 m-3)中的共沉淀。 3-D原子探针层析成像(APT)研究表明,首先形成Cu析出物,然后成核M2C碳化物,它们与Cu析出物共位,并在板条边界和位错处分布不均,表明M2C的异质成核。使用APT进行淬火(奥氏体化之后)和随后在550°C时的碳重新分布。在淬火和0.12 h时效条件下,在马氏体板条边界处观察到C的偏析(3-6 at。%C)。在进一步时效时,C重新分布,形成渗碳体和M 2C碳化物,其成分和形态随时效时间而变化。 M2C碳化物的沉淀动力学与Cu沉淀物缠结在一起。 Cu析出物和M2C碳化物的时间演变以平均半径,数量密度和体积分数表示,并与整体力学性能相关;矩阵。与仅依靠Cu析出强化的合金(例如NUCu-140钢)相比,这导致了更大的屈服强度平稳期,并且由于在Cu析出物的过时效条件下冲击韧性显着提高,因此非常有益。在550°C老化3小时后,可获得最佳的机械性能(屈服强度141 ksi或972.1 MPa,断裂伸长率24.8%,冲击韧性在--18°C时为188.0 J)。将细分散的M2C碳化物与Cu析出物结合在一起,从而为在更高强度应用中使用含Cu的Naval HSLA-115钢提供了一个有希望的途径,同时仍满足韧性和延展性要求。低碳10 wt。通过多步骤间临界淬火层化回火(QLT)处理,对%Ni钢进行最佳加工,以在回火的马氏体基体中形成热稳定的富Ni的奥氏体的精细分散体。这种奥氏体的变形引起的马氏体相变是其卓越的整体机械性能(尤其是抗HSLA-100钢的抗冲击性)的关键。这项研究阐明了控制QLT处理过程中形成的镍稳定奥氏体的热稳定性和动力学的基本物理原理。使用膨胀法强调了从650°C的第一等温临界步骤(L)继承的富镍奥氏体和新鲜马氏体区域在590°C的第二等温临界步骤(T)期间形成热稳定奥氏体的作用,同步加速器X射线衍射,3-D原子探针层析成像(APT),以及使用ThermoCalc和Dictra进行的热力学和动力学建模。结果表明,在T阶段回火期间(主要在富Ni的新鲜马氏体区域),nm厚的奥氏体层的生长,而从L阶段保留的奥氏体则用作成核模板。奥氏体的热稳定性通过使用Ghosh和Olson提出的方法通过预测其马氏体起始(Ms)温度来估算。这种方法特别有用,因为无法对本研究中研究的高度富镍奥氏体推断经验关系。在590和650°C等温回火后,观察到共放置并混合的MC / M2C型碳化物(M为Mo,Cr,V),由M2C碳化物壳和MC碳化物核组成。由于MC碳化物是从淬火状态继承而来的,因此在这些温度下回火期间,MC碳化物可能有助于M2C型碳化物的成核。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Jain, Divya.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Materials science.;Engineering.;Naval engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号