首页> 外文学位 >Formulation of Controlled Liposomal Drug Delivery System
【24h】

Formulation of Controlled Liposomal Drug Delivery System

机译:受控脂质体药物递送系统的制定

获取原文
获取原文并翻译 | 示例

摘要

The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing at a specific site of action. Liposomes have been considered as favored carrier systems because they are easily manufactured in a size controlled manner, can be produced in high drug/lipid ratios by remote loading, are rendered long-circulating by the incorporation of stealth coating, and are typically composed of naturally-derived phospholipids that mimic the properties of biological membranes. They can also be further engineered with functional moieties to improve their performances in terms of circulation longevity, target-specific delivery, enhanced intracellular penetration, contrast enhancement for image-guided therapy, and stimuli-sensitivity.;The small molecule, cerivastatin, can be passively loaded into the liposomes for local accumulation and sustained release for the treatment of pulmonary arterial hypertension. Nano-liposome encapsulated cerivastatin inhibited in vitro proliferation of pulmonary artery smooth muscle cells without producing cytotoxicity. Inhaled nano-liposomal cerivastatin was more effective in reducing pulmonary artery pressure and parameters of right ventricular functions when compared to inhaled free cerivastatin. These studies show that local pulmonary delivery of nano-liposomal cerivastatin may be an effective therapeutic strategy for the treatment of PAH.;Liposomal formulation of a hydrophobic drug delivery system can be novel to overcome the limitation of low bioavailability in the therapeutic application. The controlled encapsulation of hydrophobic anticancer drug (beta-lap) through the remote loading using ionizable cyclodextrin, mono-6-amino-6-deoxy-beta-cyclodextrins (beta-CD-NH2), into liposomes is demonstrated. This formulation (LP-beta-lap-beta-CD-NH2) showed sustained release of beta-lapachone over extended period of time without showing an initial burst effect. The cytotoxicity of remotely loaded beta-lapachone demonstrated an efficacious response to HeLa cells by providing similar potency to free drug.;The targeted delivery system seeks to improve therapeutic response by peptide-guided liposome formulations by expressing the specificity towards a targeted marker. This peptide is derived from the key binding motif of the adhesion protein, fibronectin attachment protein (FAP), which is known to interact with exposed fibronectin (FBN) of bladder tumor cells. This study shows a positive cell association towards mouse model bladder tumor cells (MB49) when liposomes were fabricated with lipopeptides bearing targeting groups (RWFV). The utilization of a double PEGylation strategy in the liposome system further enhanced the binding events by providing favored ligand orientation. The in vivo data showed a greater mean radiance values for targeted liposomes towards MB49-bearing mice when the regions of interest (ROI) were assigned around both whole bladder or tumor only areas.
机译:药物递送的最终目标是通过在特定的作用部位释放来提高生物利用度并降低活性药物成分(API)的毒性副作用。脂质体被认为是受人青睐的载体系统,因为它们易于以尺寸控制的方式制造,可以通过远程加载以高药物/脂质比率生产,通过掺入隐形涂层而可以长期循环使用,并且通常由天然组成-模仿生物膜特性的磷脂。它们还可以通过功能部分进行进一步工程改造,以改善其在循环寿命,靶标特异性递送,增强的细胞内渗透,增强图像引导治疗的对比度和刺激敏感性方面的性能。小分子西立伐他汀可以是被动加载到脂质体内以局部积累并持续释放,以治疗肺动脉高压。纳米脂质体包裹的西立伐他汀可抑制肺动脉平滑肌细胞的体外增殖,而不会产生细胞毒性。与吸入游离西立伐他汀相比,吸入纳米脂质体西立伐他汀在降低肺动脉压力和右心室功能参数方面更有效。这些研究表明,纳米脂质体西立伐他汀的局部肺部递送可能是治疗PAH的有效治疗策略。疏水性药物递送系统的脂质体制剂可能是新颖的,以克服治疗应用中生物利用度低的局限性。证明了通过使用可电离的环糊精,单-6-氨基-6-脱氧-β-环糊精(β-CD-NH2)进行远程加载,将疏水性抗癌药(β-lap)受控包裹到脂质体内。该制剂(LP-β-lap-β-CD-NH2)在延长的时间内显示出β-拉帕酮的持续释放,而未显示出初始的爆发效应。远程加载的β-拉帕酮的细胞毒性通过提供与游离药物相似的效力而证明了对HeLa细胞的有效反应。靶向递送系统通过表达针对靶向标记的特异性,试图通过肽引导的脂质体制剂改善治疗反应。该肽源自粘附蛋白的纤连蛋白附着蛋白(FAP)的关键结合基序,已知该蛋白会与膀胱肿瘤细胞的裸露纤连蛋白(FBN)相互作用。这项研究显示,当脂质体与带有靶向基团的脂肽(RWFV)一起制成脂质体时,与小鼠模型膀胱肿瘤细胞(MB49)的细胞正相关。通过提供有利的配体取向,在脂质体系统中使用双重PEG化策略进一步增强了结合事件。体内数据显示,当将目标区域(ROI)分配到整个膀胱或仅肿瘤区域周围时,针对靶向MB49的小鼠的脂质体的平均辐射值更高。

著录项

  • 作者

    Lee, Young.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biomedical engineering.;Organic chemistry.;Chemistry.;Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号