首页> 外文学位 >Electronically-Tunable Resonant Blazed Metasurface Grating
【24h】

Electronically-Tunable Resonant Blazed Metasurface Grating

机译:电子可调谐振闪耀超颖表面光栅

获取原文
获取原文并翻译 | 示例

摘要

Blazed gratings have so far been made tunable by mechanically changing the grating geometry, such as its periodicity. In this work, a low-profile planar blazed metasurface grating is demonstrated which is electronically tunable, with no moving or mechanically changing parts. The reflective metasurface is comprised of planar patch resonators with a cutting slot loaded with a surface mount varactor in each unit cell, and is demonstrated numerically and experimentally in Part 1. Coupling of the incident wave to the resonant surface provides a high efficiency back reflection or blazing. We show that by changing the DC bias, we are able to control the strip resonance, which in turn controls the Bragg blazing frequency and the reflection angle of the operation. This tuning has been confirmed by simulations and measurements for the Transverse Magnetic polarized incident wave within the X-band. In Part 2, several design are proposed to overcome the problems of the original design and improve the performance. The ground-slotted design, which maintains a simple strip resonator and places the bias on the ground plane, appears to achieve strong blazing using fewer varactors. Meanwhile, the separated bias system for ground-slotted design helps to identify defective varactors during fabrication. Future work is proposed in the final section to further refine the design and have a promised measurement result.
机译:到目前为止,通过机械地改变光栅的几何形状,例如周期性,可以使闪耀的光栅可调。在这项工作中,展示了一种薄型平面闪耀超表面光栅,该光栅可电子调谐,没有移动或机械变化的部件。反射形超表面由平面贴片谐振器组成,该平面贴片谐振器在每个晶胞中均装有一个装有表面贴装变容二极管的切割槽,并在第1部分中进行了数值和实验演示。入射波与谐振表面的耦合提供了高效的背向反射或反射。炽烈。我们表明,通过改变直流偏置,我们能够控制带状共振,而反过来又能控制布拉格的闪耀频率和操作的反射角。通过对X波段内的横向磁极化入射波的仿真和测量已确认了这种调谐。在第2部分中,提出了几种设计来克服原始设计的问题并提高性能。接地槽设计可保持简单的带状谐振器并将偏置放置在接地层上,似乎可以使用较少的变容二极管来实现强劲的燃烧。同时,用于地线开槽设计的分离偏置系统有助于在制造过程中识别有缺陷的变容二极管。在最后一节中提出了进一步的工作,以进一步完善设计并获得预期的测量结果。

著录项

  • 作者

    Tian, Haozhan.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Electrical engineering.;Electromagnetics.
  • 学位 M.Engr.
  • 年度 2017
  • 页码 45 p.
  • 总页数 45
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号