首页> 外文学位 >Fast and Modular Biomolecular Circuits Using Spatial Organization.
【24h】

Fast and Modular Biomolecular Circuits Using Spatial Organization.

机译:使用空间组织的快速模块化生物分子电路。

获取原文
获取原文并翻译 | 示例

摘要

"Biological information processing hubs" ranging from brain to cells to enzyme cascades extensively use spatial organization to process massively parallel molecular instructions and accurately respond to external and internal stimuli. Similarly, human-engineered systems ranging from ancient irrigation networks to modern semiconductor circuits have extensively used spatial organization to steer flux along intended pathways and minimize undesired interactions. In the quest of building artificial nanosystems driven by the fundamental concepts of natural design, DNA has emerged as an incredibly powerful biomaterial due to its biocompatibility, polymeric mechanical properties and predictable sequence programmability. DNA-based nanostructures can potentially detect intracellular or extracellular components like RNAs, proteins or small biological molecules and activate specific bioprocesses (e.g. RNA interference) upon successful detection. Furthermore, these nanodevices can perform molecular computation using one or more intracellular components as input signals and generate an output signal (e.g. a readout or bioprocess activation). During my Ph.D. I have been working on developing a novel class of such DNA-based molecular circuits for molecular computation and molecular imaging using spatial organization as the fundamental design principle.;In my thesis, I start with presenting a brief overview and key advancements in the field of DNA Nanotechnology (Chapter 1). Here, I have also presented different DNA-based nanosystems that use spatial organization.;For the major part of my Ph.D. I have worked on the design and development of an integrated architecture for building fast and modular molecular circuits on a DNA origami scaffold using spatial localization as a basic design principle (Chapter 2). These spatially-localized DNA-based circuits exhibit significantly faster circuit operation and extensive reuse of circuit components with minimal interference due to spatial localization of circuit components. These nanoscale circuit boards can potentially be used for multiplexed molecular sensing in living cells.;The fundamental challenges for detecting intracellular components in living cells with nucleic acid nanodevices include their in vivo stability, efficiency, and control over intracellular localization.We have worked on these challenges and used nucleic acid strand displacement probes to detect intracellular mRNAs in living mammalian cells (Chapter 3). Using the categorically redesigned probes, we performed mRNA quantification and real-time mRNA visualization studies. The findings from this study will act as fundamental guidelines for building complex DNA-based molecular systems which can operate with intracellular components in living mammalian cells.
机译:从大脑到细胞再到酶级联反应的“生物信息处理中心”广泛使用空间组织来处理大量平行的分子指令,并准确地响应内部和外部刺激。同样,从古代灌溉网络到现代半导体电路的人类工程系统已广泛使用空间组织来引导通量沿着预定路径流动并最大程度地减少不良相互作用。在寻求由自然设计的基本概念驱动的人造纳米系统的探索中,DNA由于其生物相容性,聚合物力学性能和可预测的序列可编程性而成为一种不可思议的强大生物材料。基于DNA的纳米结构可以潜在地检测细胞内或细胞外成分,如RNA,蛋白质或小的生物分子,并在成功检测后激活特定的生物过程(例如RNA干扰)。此外,这些纳米装置可以使用一种或多种细胞内组分作为输入信号来执行分子计算并产生输出信号(例如读出或生物过程激活)。在我攻读博士学位期间我一直在研究使用空间组织作为基本设计原理的新型此类基于DNA的分子电路,用于分子计算和分子成像。;在我的论文中,我首先介绍了该领域的简要概述和关键进展DNA纳米技术(第1章)。在这里,我还介绍了使用空间组织的不同的基于DNA的纳米系统。我一直在设计和开发集成体系结构,该体系结构使用空间定位作为基本设计原理在DNA折纸支架上构建快速和模块化的分子电路(第2章)。这些基于空间的,基于DNA的电路表现出明显更快的电路操作和电路组件的广泛复用,并且由于电路组件的空间定位而产生的干扰最小。这些纳米级电路板可以潜在地用于活细胞中的多重分子传感。;使用核酸纳米设备检测活细胞中细胞内成分的基本挑战包括其体内稳定性,效率和对细胞内定位的控制。挑战并使用核酸链置换探针检测活的哺乳动物细胞中的细胞内mRNA(第3章)。使用分类重新设计的探针,我们进行了mRNA定量和实时mRNA可视化研究。这项研究的结果将作为构建复杂的基于DNA的分子系统的基本指南,该分子系统可以与活的哺乳动物细胞中的细胞内成分一起运行。

著录项

  • 作者

    Chatterjee, Gourab.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Biomedical engineering.;Nanotechnology.;Molecular physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号