首页> 外文学位 >Architecture Exploration for Low-Power Wearable Stress Detection Processor.
【24h】

Architecture Exploration for Low-Power Wearable Stress Detection Processor.

机译:低功耗可穿戴应力检测处理器的架构探索。

获取原文
获取原文并翻译 | 示例

摘要

Personal monitoring systems can offer effective solutions for human health. These systems require sampling and processing on multiple streams of physiological signals to extract meaningful knowledge. The processing typically consists of feature extraction, data fusion, and classification stages, which require a large number of digital signal processing and machine learning kernels. In order to be used in a wearable environment, the processing system needs to be low-power, real-time and light-weight. In this thesis, we present a personalized stress monitoring processor that can meet these requirements. A dataset provided by Army Research Laboratory (ARL) that contains multi-physiological signals is used for design exploration. Various physiological features are explored to maximize stress detection accuracy using two machine learning classifiers including Support Vector Machine (SVM) and K-Nearest Neighbors (KNN).;Among different extracted features from four physiological sensors, heart rate and accelerometer features have 96.7% and 95.8% detection accuracy for SVM and KNN classifiers, respectively.;Two fully flexible and multi-modal processing hardware designs are presented that consist of feature extraction and classification algorithms using SVM and KNN for stress monitoring. We first demonstrate the ASIC post-layout implementation of both designs in 65 nm CMOS technology. The proposed SVM processor occupies 0.17 mm2 and dissipates 39.4 mW at 250 MHz. The KNN processor has an area of 0.3 mm2 and consumes 76.69 mW at 250 MHz.;Next, we explore the choice of low-power programmable embedded processors for energy-efficient processing of physiological signals for a wearable multi-modal stress detection system. The entire system consists of feature extraction and classification for all 15 participant's data, which is implemented on a number of platforms including Artix-7 FPGA, NVIDIA TK1 ARM-A15 CPU and Kepler GPU, and a domain-specific many core named Power Efficient Nano Clusters (PENC). The comparison of performance metrics among all platforms shows that PENC has the highest throughput (decision/sec) over all platforms due to existence of task-level and data-level parallelism present in its architecture. PENC improves the throughput by 4.6x and 4.05x over the Artix FPGA for the KNN and SVM implementations respectively. The experimental results also indicate that for a larger design such as KNN with 16K training data, PENC accelerator is the most energy efficient platform. For KNN implementation, PENC improves the energy efficiency by 4.7x and 268x over the FPGA and GPU, respectively. However, for the SVM implementation with 6000 support vectors as a smaller design, the FPGA improves the energy efficiency by 1.2x and 630x over the PENC and GPU, respectively. These findings suggest that the PENC manycore can be used as an energy-efficient, programmable and real-time platform for biomedical applications with large amount of data and computation-intensive parallel processing.
机译:个人监控系统可以为人类健康提供有效的解决方案。这些系统需要对多个生理信号流进行采样和处理,以提取有意义的知识。该处理通常包括特征提取,数据融合和分类阶段,这需要大量的数字信号处理和机器学习内核。为了在可穿戴环境中使用,处理系统需要低功耗,实时且重量轻。在本文中,我们提出了一种可以满足这些要求的个性化压力监测处理器。由陆军研究实验室(ARL)提供的包含多生理信号的数据集用于设计探索。利用支持向量机(SVM)和最近邻(KNN)这两个机器学习分类器,探索了各种生理特征以最大程度地提高了压力检测的准确性;在从四个生理传感器中提取的不同特征中,心率和加速度计的特征分别为96.7%和支持向量机和KNN分类器的检测精度分别为95.8%。提出了两种完全灵活的多模态处理硬件设计,包括使用SVM和KNN进行压力监测的特征提取和分类算法。我们首先演示了采用65 nm CMOS技术的两种设计的ASIC后布局实现。建议的SVM处理器占用0.17 mm2,在250 MHz时耗散39.4 mW。 KNN处理器的面积为0.3 mm2,在250 MHz时的功耗为76.69 mW。接下来,我们探索选择低功耗可编程嵌入式处理器来对可穿戴多模态压力检测系统进行生理信号的节能处理。整个系统包括对所有15个参与者的数据进行特征提取和分类,并在许多平台上实现,包括Artix-7 FPGA,NVIDIA TK1 ARM-A15 CPU和Kepler GPU,以及特定于域的多个内核,称为Power Efficient Nano群集(PENC)。所有平台之间性能指标的比较表明,由于其架构中存在任务级和数据级并行性,因此PENC在所有平台上具有最高的吞吐量(决策/秒)。 PENC分别比Artix FPGA的KNN和SVM实现的吞吐量提高了4.6倍和4.05倍。实验结果还表明,对于较大的设计(例如具有16K训练数据的KNN),PENC加速器是最节能的平台。对于KNN实施,PENC分别比FPGA和GPU的能效提高了4.7倍和268倍。但是,对于采用6000支持向量的SVM实现作为较小的设计,FPGA的能效分别比PENC和GPU高1.2倍和630倍。这些发现表明,PENC manycore可以用作具有大量数据和计算密集型并行处理功能的生物医学应用的节能,可编程和实时平台。

著录项

  • 作者

    Attaran, Nasrin.;

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Computer engineering.;Bioengineering.
  • 学位 M.S.
  • 年度 2017
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号