首页> 外文学位 >In Situ TEM and Continuum Modeling of Laser-Induced Rapid Solidification of Aluminum and Aluminum Copper Alloys.
【24h】

In Situ TEM and Continuum Modeling of Laser-Induced Rapid Solidification of Aluminum and Aluminum Copper Alloys.

机译:铝和铝铜合金的激光诱导快速凝固的原位TEM和连续谱模型。

获取原文
获取原文并翻译 | 示例

摘要

In situ characterization of rapid solidification processes has proven too challenging for conventional characterization techniques as they fail to meet the spatio-temporal resolution requirements for observing the rapid transient processes. Recent advances in ultra-fast timeresolved in situ transmission electron microscopy enabled characterization of pulsed laser induced melting and rapid solidification processes in Al and Al -- Cu alloys with unprecedented spatio-temporal resolution using the unique Dynamic Transmission Electron Microscope (DTEM). The DTEM achieves nano-scale spatio-temporal resolution by modifying a conventional TEM with two laser systems -- the image formation laser system and process initiation laser system, for observing rapid solidification process in a thin film geometry.;In this study, in-situ DTEM experimentation has been utilized to document rapid solidification processes in Al and Al -- Cu alloy thin films, enabling accurate determination of average solidification velocity evolution and associated crystal growth mode changes during rapid solidification process in pure aluminum and hypo-eutectic and hyper-eutectic Al -- Cu alloys. Enthalpy transport based computer modeling has been performed and benchmarked by experimental metrics obtained from in situ DTEM experimentation to calculate the spatiotemporal thermal field evolution during the rapid solidification process in Al. This demonstrated the unique capability of in situ DTEM experimentation to deliver quantitative metrics from direct observation with nano-scale spatio-temporal resolution for the validation of computer modeling. Post-mortem characterization provided detailed insights on microstructural evolution during rapid solidification process by establishing the correlation between solidification conditions and resultant microstructural constitution. The respective influence of heat transfer, crystallography and Cu concentration on the details of the dynamics of the rapid solidification process in hypoeutectic and hyper-eutectic Al -- Cu alloys were examined and quantified. The investigation showed that rapidly solidified microstructures in pulsed laser irradiated TEM transparent Al -- Cu thin films exhibit equivalent microstructural features developed in bulk alloy samples after laser surface melting. DTEM experimentation uniquely allowed direct observation of rapid solidification processes in Al and Al-Cu alloys, and facilitated high precision determination of process metrics such as critical velocities for crystal growth mode changes, which are important to improved understanding of alloy microstructure evolution under the driven, far-fromequilibrium conditions pertaining to rapid solidification.
机译:对于常规表征技术,快速凝固过程的原位表征已被证明过于具有挑战性,因为它们不能满足用于观察快速瞬态过程的时空分辨率要求。超快时间原位透射电子显微镜的最新进展使得能够使用独特的动态透射电子显微镜(DTEM)来表征具有前所未有的时空分辨率的Al和Al-Cu合金中的脉冲激光诱导的熔化和快速凝固过程。 DTEM通过使用两个激光系统(图像形成激光系统和工艺启动激光系统)修改传统的TEM来实现纳米级的时空分辨率,以观察薄膜几何形状中的快速凝固过程。原位DTEM实验已被用于记录Al和Al-Cu合金薄膜中的快速凝固过程,从而能够准确确定纯铝以及亚共晶和过共晶的快速凝固过程中的平均凝固速度演变以及相关的晶体生长模式变化。共晶Al-Cu合金。已经执行了基于焓传递的计算机建模,并通过从原位DTEM实验获得的实验指标进行了基准测试,以计算Al快速凝固过程中时空热场的演化。这证明了原位DTEM实验的独特能力,可以通过直接观察和纳米级时空分辨率提供定量指标,以验证计算机建模。事后表征通过建立凝固条件与所得微观结构构成之间的相关性,为快速凝固过程中的微观结构演变提供了详细的见识。研究并量化了传热,晶体学和Cu浓度对亚共晶和过共晶Al-Cu合金快速凝固过程动力学细节的影响。研究表明,在脉冲激光辐照的TEM透明Al-Cu薄膜中,快速凝固的微观结构表现出在激光表面熔化后在散装合金样品中产生的等效微观结构特征。 DTEM实验的独特之处在于可以直接观察Al和Al-Cu合金中的快速凝固过程,并有助于高精度确定工艺指标,例如晶体生长模式变化的临界速度,这对于增进对在驱动下合金微结构演变的理解至关重要,与快速凝固有关的非平衡条件。

著录项

  • 作者

    Liu, Can.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Materials science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号