首页> 外文学位 >Structure, Drivers, and Trophic Interactions of the Demersal Fish Community in Chesapeake Bay.
【24h】

Structure, Drivers, and Trophic Interactions of the Demersal Fish Community in Chesapeake Bay.

机译:切萨皮克湾深海鱼类群落的结构,驱动因素和营养相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Management of fisheries resources is increasingly broadening its scope from single-species approaches to more holistic, ecosystem-based approaches that account for interactions of fish with a variety of ecological factors, such as predators, prey, and habitat. This ecosystem based fisheries management (EBFM) approach requires thorough biological and ecological understanding of systems pertaining to community structure, habitat suitability, and food web interactions. To strengthen the ecological underpinnings of EBFM efforts in Chesapeake Bay, the largest estuary in the USA, I conducted synoptic analyses examining the structure, function, and patterns of the bay's demersal fish community. This research relied on I0 years of data from a multi-species, bimonthly bottom trawl survey of the Chesapeake Bay mainstem. The unifying objectives of this work were to 1) synthesize basic biological and ecological information of many Chesapeake Bay fishes, and 2) examine the environmental drivers of community structure and trophic interactions in the Bay. One major hypothesis underlying the more detailed research objectives for each component was that bay-wide patterns in biomass and feeding habits of Chesapeake Bay fishes were mostly driven through bottom-up processes governed by a blend of small- and large-scale environmental factors.;As food web structure and trophic interactions are governed by the presence, distribution, abundance, and behavior of species, Chapter 1 focused on evaluating patterns for these basic biological characteristics for a large suite of 50 species and investigating environmental factors that influence the community trends. Univariate and multivariate statistical modeling revealed that the demersal fish community (dominated by five species) was strongly structured along a salinity gradient, and other factors (e.g. dissolved oxygen, temperature, month, and year) helped regulate biomass and diversity trends. Chapter 2 synthesized diet information for 47 fish species, demonstrated the role of five prey groups (mysids, fishes, bivalves, polychaete worms, and crustaceans) in differentiating feeding guilds, and highlighted the importance of non-pelagic prey groups (especially the hyper-benthic mysids) in supporting the nutritional needs of fishes. Diets of 12 predator species were investigated in more detail in Chapter 3 to infer the dynamics of four important prey groups (mysids, bay anchovy, polychaetes, and bivalves) using advanced statistical modeling techniques. Results revealed generally coherent consumption trends across predators for a given prey, suggestive of prey availability driving consumptive patterns. Synchronous annual peaks in prey consumption were indicative of pulses in prey production (particularly mysids and bivalves) that were exploited by predator populations. To evaluate the population-scale effects of these bottom-up alterations in prey productivity, Chapter 4 relied on a simulation model to examine the potential effects that these annual changes in prey availability could have on consumption and production of one representative predator species. The model indicated that enhanced individual growth resulting from pulses in prey production could generate substantial gains in predator spawning stock biomass, recruitment, and fishery yield. However, the bottom-up effects on predator production had only modest effects on rebuilding times of a depleted population relative to controls on fishing mortality.;This research represents one of the largest studies on community structure and trophic interactions for demersal fishes in an estuarine environment, contributing to a broader understanding of fish ecology within a complex and dynamic system. By filling research gaps identified for EBFM in Chesapeake Bay, this body of work also supports a more holistic management approach for the sustainable use of resources from the Chesapeake Bay and coastal waters of the Northwest Atlantic Ocean.
机译:渔业资源管理的范围日益扩大,从单一物种的方法到更全面的,基于生态系统的方法,这些方法考虑了鱼类与各种生态因素(例如掠食者,猎物和栖息地)的相互作用。这种基于生态系统的渔业管理(EBFM)方法要求对与社区结构,栖息地适宜性和食物网相互作用有关的系统进行全面的生物学和生态学理解。为了加强美国最大河口切萨皮克湾的EBFM努力的生态基础,我进行了概要分析,检查了该湾海底鱼类群落的结构,功能和模式。这项研究基于对切萨皮克湾主干的多物种双月底拖网调查得出的10年数据。这项工作的统一目标是:1)综合许多切萨皮克湾鱼类的基本生物学和生态信息,以及2)检查海湾中群落结构和营养相互作用的环境驱动因素。每个组成部分的更详细研究目标的基础的一个主要假设是,切萨皮克湾鱼类的生物多样性和取食习惯在海湾范围内的格局主要是由自下而上的过程驱动的,该过程由小规模和大规模环境因素共同控制。由于食物网的结构和营养相互作用受物种的存在,分布,丰度和行为支配,因此第一章着重于评估50种物种的这些基本生物学特征的模式,并研究影响群落趋势的环境因素。单变量和多变量统计模型表明,深海鱼类群落(由五个物种主导)沿盐度梯度具有很强的结构,其他因素(例如溶解氧,温度,月份和年份)有助于调节生物量和多样性趋势。第2章综合了47种鱼类的饮食信息,论证了五个捕食类(类蝇,鱼类,双壳类,多毛蠕虫和甲壳类动物)在区分喂养行会中的作用,并强调了非远洋捕食类(特别是高捕食类)的重要性。底栖鱼类)来支持鱼类的营养需求。在第3章中对12种捕食动物的饮食进行了更详细的研究,以使用先进的统计建模技术推断四个重要的猎物组(my类,海湾an鱼,多毛bi和双壳类动物)的动态。结果表明,给定猎物的捕食者总体上具有一致的消费趋势,这表明猎物的可用性驱动了消费模式。猎物消耗的年度同步高峰表明了被捕食者利用的猎物生产(尤其是类甜食和双壳类动物)的脉动。为了评估这些自下而上的变化对猎物生产力的人口规模影响,第4章依靠一个仿真模型来检验这些猎物可利用量的年度变化可能对一种代表性捕食物种的消费和生产产生的潜在影响。该模型表明,由于猎物生产的脉冲而引起的个体增长的增强,可以使捕食者产卵量,捕捞量和渔业产量大幅度提高。然而,相对于捕捞死亡率的控制,对捕食者生产的自下而上的影响对枯竭种群的重建时间只产生了中等程度的影响。有助于在复杂而动态的系统中更广泛地了解鱼类生态。通过填补在切萨皮克湾针对EBFM的研究空白,该工作组还支持更全面的管理方法,以可持续利用切萨皮克湾和西北大西洋沿岸水域的资源。

著录项

  • 作者

    Buchheister, Andre.;

  • 作者单位

    The College of William and Mary.;

  • 授予单位 The College of William and Mary.;
  • 学科 Ecology.;Biology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 266 p.
  • 总页数 266
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号