首页> 外文学位 >A simulation study investigating a radiation detector utilizing the prompt gamma range verification technique for proton radiotherapy.
【24h】

A simulation study investigating a radiation detector utilizing the prompt gamma range verification technique for proton radiotherapy.

机译:一项模拟研究,研究了利用快速伽马范围验证技术进行质子放射治疗的辐射探测器。

获取原文
获取原文并翻译 | 示例

摘要

Proton therapy has shown to be a viable therapy for radiation oncology applications. The advantages of using protons as compared to photons in the treatments of diseases with radiation are numerous including the ability to deliver overall lower amounts of lethal radiation doses to the patient. This advantage is due to the fundamental interaction mechanism of the incident therapeutic protons with the patient, which produces a characteristic dose-distribution unique only to protons. Unlike photons, the entire proton beam is absorbed within the patent and the dose-distribution's maximum occurs near the end of the proton's path. Protons deliver less dose on the skin and intervening tissues, tighter dose conformality to the disease site, as well as no dose past the target volume, sparring healthy tissue distally in the patient. Current research in proton therapy is geared towards minimizing proton range uncertainty and monitoring in-vivo the location of the proton's path. Monitoring the beam's path serves also to verify which healthy structures/tissues were irradiated and whether the target volume has met the prescription dose.;Among the many techniques used for in-vivo proton monitoring, the technique based on the emitted secondary particles, specifically the Prompt Gamma (PG) method, can be used for clinical implementation. This work focuses on developing a radiation detector system for using the PG method by investigating the characterizing the secondary particle field emitted from plastic and water phantoms as well as a radiation detector based on glass materials that exploits the Cherenkov phenomenon.
机译:质子疗法已被证明是放射肿瘤学应用的可行疗法。与光子相比,使用质子在放射疾病治疗中具有许多优势,包括能够向患者提供较低总量的致死放射剂量。该优点归因于入射治疗性质子与患者的基本相互作用机制,这产生了仅质子唯一的特征剂量分布。与光子不同,整个质子束在专利中被吸收,并且剂量分布的最大值出现在质子路径的末端附近。质子在皮肤和中间组织上的剂量较小,对疾病部位的剂量适应性更强,并且没有剂量超过目标体积,从而使患者的远端健康组织受到伤害。当前在质子治疗中的研究旨在使质子范围的不确定性最小化,并在体内监测质子路径的位置。监视束的路径还可以验证照射了哪些健康的结构/组织以及目标体积是否已达到处方剂量。在用于体内质子监视的许多技术中,该技术基于发射的次级粒子,特别是提示伽玛(PG)方法,可用于临床实施。这项工作的重点是通过研究塑料和水体模发出的二次粒子场的特性,开发用于使用PG方法的辐射探测器系统以及基于玻璃材料的利用Cherenkov现象的辐射探测器。

著录项

  • 作者

    Lau, Andrew David.;

  • 作者单位

    The University of Oklahoma Health Sciences Center.;

  • 授予单位 The University of Oklahoma Health Sciences Center.;
  • 学科 Medical imaging.;Nuclear physics and radiation.;Oncology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号