首页> 外文学位 >Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels.
【24h】

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels.

机译:微藻蒸汽加氢气化生产合成燃料的可行性。

获取原文
获取原文并翻译 | 示例

摘要

The development of sustainable fuels from biomass has become important due to the depletion of fossil fuels and concerns of global climate change. Microalgae offer several advantages as sources for bioenergy; their rapid growth rate, high productivity and lipid content, ability to cultivate in places other than on farmlands, or arable land, and their ability to capture CO2 from flue gas which can be used as a source for photosynthesis. Microalgae are able to produce a wide range of biofuels including biodiesel, methane, ethanol, hydrogen, and synthetic fuels using different conversion technologies. High energy requirements and the cost for dewatering/drying and extraction are major drawbacks. The steam hydrogasification (SHR) process is attractive as an alternative for the conversion of microalgae to biofuels because the SHR can handle wet microalgae biomass without drying or extraction and been shown to have high carbon conversion efficiencies.;The overall objective of this thesis is to investigate the feasibility of using whole microalgae directly (wet biomass) and/or using the microalgae residue after lipid extraction to produce low carbon sustainable fuel using the CE--CERT process. Steam hydrogasification can convert microalgae to a high energetic synthesis gas in the presence of steam and hydrogen. The carbon in the synthesis gas then can be converted to synthetic fuels and electricity.; The performance of steam hydrogasification of microalgae was investigated by varying parameters including gasification temperature, H2/C and steam/biomass ratios. It was found that the operating conditions at a gasification temperature 750 °C, a steam/biomass ratio of 2 and H 2/C ratio of 1 could provide richer in methane production and high carbon conversion (65%) using microalgae as a feedstock. The hydrogen in the product gas was sufficient to maintain a self--sustained supply back to the SHR. One ton per day of microalgae biomass is expected to produce FT fuel of 1.06 barrel with an overall thermal efficiency of 27%.;The utilization of the microalgae residue from traditional transesterification and the effect of different lipid content of different microalgae using the steam hydrogasification process was investigated also. It was found that the SHR could use microalgae residue to reduce the algae waste and recover energy of about 4.9 MJ/kg dry microalgae residue. A higher lipid content would enhance the performance of the SHR in terms of carbon conversion and production of methane that resulted in more FT fuel.;Life cycle energy and greenhouse gas (GHG) emissions for the production of Fischer--Tropsch (FT) fuel derived from microalgae using the CE--CERT process were calculated and compared to microalgae to biodiesel production using transesterification. It was found that life cycle energy requirements for the microalgae biofuel production using CE--CERT process were significantly lower (about 50%) compared to the transesterification process. The life cycle analysis showed that the lowest energy consumption to be 1.96 MJ/MJ fuel (40 wt% of lipid content) compared to microalgae to biodiesel production. CE--CERT technology reduces the GHG emissions by 50--64% compared to production of conventional diesel fuel.
机译:由于化石燃料的枯竭和对全球气候变化的关注,利用生物质开发可持续燃料已经变得很重要。微藻作为生物能源具有许多优势。它们的快速生长速度,高生产率和脂质含量,在农田或耕地以外的其他地方进行耕种的能力以及从烟气中捕获二氧化碳的能力,这些烟气可用作光合作用的来源。微藻能够使用不同的转化技术来生产各种生物燃料,包括生物柴油,甲烷,乙醇,氢和合成燃料。高能量需求以及脱水/干燥和提取的成本是主要缺点。蒸汽加氢气化(SHR)工艺作为将微藻转化为生物燃料的替代方法很有吸引力,因为SHR可以处理湿微藻生物质而无需干燥或提取,并且具有很高的碳转化效率。研究直接使用整个微藻类(湿生物质)和/或使用CE-CERT工艺提取脂质后使用微藻类残留物生产低碳可持续燃料的可行性。蒸汽加氢气化可以在存在蒸汽和氢气的情况下将微藻类转化为高能合成气。然后,合成气中的碳可以转化为合成燃料和电力。通过改变包括气化温度,H2 / C和蒸汽/生物质比在内的参数来研究微藻的蒸汽加氢气化性能。发现在气化温度为750°C,蒸汽/生物质比为2,H 2 / C比为1的条件下,使用微藻类作为原料可以提供更丰富的甲烷生产和高碳转化率(65%)。产物气中的氢气足以维持自给自足的SHR供气。每天一吨的微藻生物质预计将产生1.06桶的FT燃料,总热效率为27%。;传统的酯交换反应产生的微藻残渣的利用以及采用蒸汽加氢气化工艺的不同微藻的不同脂质含量的影响也进行了调查。结果发现,SHR可以利用微藻残渣减少藻类浪费,并回收约4.9 MJ / kg干微藻残渣的能量。较高的脂质含量将在碳转化和甲烷生产方面提高SHR的性能,从而产生更多的FT燃料;用于生产Fischer-Tropsch(FT)燃料的生命周期能量和温室气体(GHG)排放计算了使用CE-CERT工艺从微藻中提取的微藻,并将其与使用酯交换法生产微藻的生物柴油进行了比较。发现使用CE-CERT工艺生产微藻生物燃料的生命周期能量需求比酯交换工艺要低得多(约50%)。生命周期分析表明,与微藻生产生物柴油相比,最低能耗为1.96 MJ / MJ燃料(脂质含量的40 wt%)。与常规柴油相比,CE--CERT技术可将温室气体排放量减少50--64%。

著录项

  • 作者

    Suemanotham, Amornrat.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemical engineering.;Microbiology.;Sustainability.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号