首页> 外文学位 >A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage.
【24h】

A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage.

机译:一种优化太阳能发电,供应削减,输电和存储相结合的模型。

获取原文
获取原文并翻译 | 示例

摘要

With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.).;This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that---as at shorter timescales---cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north/south bearing.;Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis.;In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used.;The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than
机译:随着近期太阳能光伏产业的飞速发展,解决其在全球电网中实现高渗透率的最大障碍:太阳能固有的可变性至关重要。资源的可变性是由很大程度上不可预测的气象现象以及地球围绕太阳和绕其自身轴的可预测旋转引起的。为了获得非常高的光伏穿透力,必须缓解日光供应和需求之间的不平衡。本文详细介绍的研究包括计算模型的开发,该模型寻求优化3种针对太阳能变化的供应方解决方案的组合,以最大程度地减少由此产生的电力总成本:储存(当太阳能发电量超过需求时会储存多余的太阳能)不满足需求时的利用率),互联互通(太阳能发电分布在较大的地理区域并电气互联以使整个区域的产出平稳)和智能削减(太阳能容量过大且关键时刻削减多余发电量以最大程度地减少能源消耗)该模型利用在这一博士生的,基于卫星的光伏输出的博士工作中创建的数据库,该数据库跨越10年,每天间隔,在全球范围内有64,000个独特的地理区域。作为模型设计和结果的基础,该数据库被用来进一步理解在大于1天的时间范围内太阳能资源的可变性。结果表明-在较短的时间尺度上-云/天气引起的太阳变异性随地理范围而减小,而减轻其变异性的地理范围随时间尺度而增大,并受云/天气系统的普遍速度调节。如果仅在1500公里的地理范围以北/南方位为导向,则在30天的时间范围内无法预测的太阳能变化将得到缓解。;使用反映当今太阳能发电技术实际成本的技术和经济数据,储能和电力传输结合此模型,我们确定了这些解决方案的最低成本组合,可将太阳能发电厂的可变输出转换为3种不同的输出曲线:与基本负荷发电厂等效的恒定输出,明确定义的季节性变量输出没有天气引起的可变性,并且输出可变,但是可以在未来几天内进行100%的可预测性;为了做到这一点,通过改变所需的输出配置文件,能源量进行了超过14,000次模型运行限制,太阳能的渗透以及整个美国大陆的地理区域。尽管需要额外的电力传输,但与仅使用存储设备相比,地理互连在满足任何研究的输出特性时都可以将平均电费降低65%以上。与仅使用存储相比,尽管满足未充分利用太阳能容量的成本,但满足所有研究的输出曲线时,减少能耗有可能将总电力成本降低75%以上;值得庆幸的是,这三种减少变化的策略值得不互斥。与仅使用能量存储来满足指定输出曲线的情况相比,当以理想水平组合时,所研究的每个区域的用电成本均降低了80%以上。如果将当前的太阳能发电,输电和储能成本包括在内,则最佳配置可以保守地为整个美国大陆(相当于没有停机时间的核电站)提供保证的太阳能基本负荷发电,且少于

著录项

  • 作者

    Perez, Marc J. R.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Energy.;Engineering Environmental.;Atmospheric Sciences.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号