首页> 外文学位 >Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials.
【24h】

Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials.

机译:先进的原子力显微镜技术,用于表征纤维素纳米材料的特性。

获取原文
获取原文并翻译 | 示例

摘要

The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in standard AFM measurements. A method is presented to measure these vibrational shapes. This method is then used to study CR-AFM, providing unique insight into CR-AFM modeling and experiments. The methodologies discussed in this dissertation provide improved capability to measure nanomechanical properties with the AFM.
机译:纳米机械性能的测量对科学和工业非常感兴趣。该领域取得进展的关键是开发新技术和分析方法,以识别,测量和量化这些特性。本文考虑了用原子力显微镜(AFM)测量纳米力学性能的新数据分析方法和实验技术。然后将这些技术应用于纤维素纳米颗粒的研究,纤维素纳米颗粒是一种丰富的植物来源的纳米材料。量化不确定性是制造可靠的纳米工程材料和产品的前提。但是,严格的不确定性量化很少用于AFM的材料性能测量。提出了一个框架,通过考虑到此类测量固有的主要不确定性来源,将不确定性归因于用AFM测量的任何纳米颗粒或表面的局部纳米力学性能。通过量化基于力的AFM对被覆纤维素纳米晶体横向弹性模量的测量的不确定性,证明了该方法。接下来,利用接触共振(CR)AFM对不同类型的纤维素纳米颗粒进行了更全面的研究。 CR-AFM是一种动态AFM技术,它利用AFM悬臂与样品表面永久接触的共振频率来预测纳米机械性能。对于某些材料系统,此技术提供了优于静态AFM方法的改进的测量灵敏度。比较了纤维素原料和加工工艺对纤维素纳米颗粒性能的影响。最后,研究了动态AFM悬臂振动形状。许多AFM模式利用与样品永久接触的悬臂的动态响应来提取局部材料特性。这些模式的一个共同挑战是它们具有一定的悬臂振动形状,这在标准AFM测量中是无法实现的。提出了一种测量这些振动形状的方法。然后,该方法用于研究CR-AFM,为CR-AFM建模和实验提供独特的见解。本文讨论的方法论提供了改进的利用原子力显微镜测量纳米力学性能的能力。

著录项

  • 作者

    Wagner, Ryan Bradley.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mechanical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号