首页> 外文学位 >The regulation and assembly of the flagellum in Bacillus subtilis.
【24h】

The regulation and assembly of the flagellum in Bacillus subtilis.

机译:枯草芽孢杆菌鞭毛的调控和组装。

获取原文
获取原文并翻译 | 示例

摘要

Bacteria can build fantastically complex nano-machines to perform a variety of physiological activities. Two examples of these nano-machines are the flagellum and the injectisome. The flagellum is found in many bacterial species including Salmonella enterica and Bacillus subtilis, and functions like a propeller to generate the force necessary to conduct swarming motility. The injectisome is found in pathogenic bacteria including Yersinia pestis and Yersinia enterocolitica, and functions like a molecular needle to inject effector molecules into host cells so that the pathogen can both hide from the host's immune system and make nutrients available for uptake. The understanding of the temporal regulation of assembly and control of the subsequent activity of these nano-machines is critical to our understanding of biological multicomponent machines so that we may identify targets for therapeutics. Here I describe and compare three levels of regulation that affect the assembly and function of the flagellum and the injectisome. I then describe a novel regulator of flagellar assembly, SwrB, where I use exogenic suppressors of swrB to show that SwrB promotes flagellar assembly through the essential export apparatus protein, FliP, as well as the rotor protein, FliG. From my investigations I infer that SwrB functions as an early checkpoint in flagellar assembly. Finally, I identify residues within SwrB that are essential for its ability to promote flagellar assembly. From my analysis, I infer that SwrB localizes at the cell membrane via its N-terminal transmembrane domain where it may interact with additional proteins to promote flagellar assembly through its C-terminal functional domain.
机译:细菌可以构建极为复杂的纳米机器,以执行各种生理活动。这些纳米机器的两个例子是鞭毛和注射体。鞭毛存在于许多细菌物种中,包括肠炎沙门氏菌和枯草芽孢杆菌,其功能类似于螺旋桨,以产生进行群体运动所需的力。该注射体存在于包括鼠疫耶尔森菌和小肠结肠炎耶尔森菌在内的致病细菌中,其作用类似于分子针,将效应分子注入宿主细胞,这样病原体既可以躲避宿主的免疫系统,又可以吸收营养。了解这些纳米机器的组装和后续活动的时间调节的理解对于我们对生物多组分机器的理解至关重要,因此我们可以确定治疗的靶标。在这里,我描述并比较了影响鞭毛和注射体装配和功能的三个调节水平。然后,我描述了一种新型的鞭毛装配调控因子SwrB,在其中我使用了swrB的外源抑制剂来显示SwrB通过必需的出口设备蛋白FliP和转子蛋白FliG促进鞭毛装配。从我的调查中,我推断SwrB是鞭毛装配中的早期检查点。最后,我确定了SwrB中对于促进鞭毛装配至关重要的残基。从我的分析中,我推断出SwrB通过其N端跨膜结构域定位在细胞膜上,在这里它可能与其他蛋白质相互作用,从而通过其C端功能结构域促进鞭毛组装。

著录项

  • 作者

    Phillips, Andrew M.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Biology Microbiology.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 260 p.
  • 总页数 260
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号