首页> 外文学位 >Mechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets.
【24h】

Mechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets.

机译:镁和钢板的锂离子电池的机械行为和超声焊接熔合搭接剪切试样的疲劳行为。

获取原文
获取原文并翻译 | 示例

摘要

The mechanical behaviors of LiFePO4 battery cell and module specimens under in-plane constrained compression were investigated for simulations of battery cells, modules and packs under crush conditions. The experimental stress-strain curves were correlated to the deformation patterns of battery cell and module specimens. Analytical solutions were developed to estimate the buckling stresses and to provide a theoretical basis for future design of representative volume element cell and module specimens. A physical kinematics model for formation of kinks and shear bands in battery cells was developed to explain the deformation mechanism for layered battery cells under in-plane constrained compression. A small-scale module constrained punch indentation test was also conducted to benchmark the computational results. The computational results indicate that macro homogenized material models can be used to simulate battery modules under crush conditions.;Fatigue behavior and failure modes of ultrasonic spot welds in lap-shear specimens of magnesium and steel sheets with and without adhesive were investigated. For ultrasonic spot welded lap-shear specimens, the failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the kinked crack failure mode under high-cycle loading conditions. For adhesive-bonded and weld-bonded lap-shear specimens, the test results show the near interface cohesive failure mode and the kinked crack failure mode under low-cycle and high-cycle loading conditions, respectively. Next, the analytical effective stress intensity factor solutions for main cracks in lap-shear specimens of three dissimilar sheets under plane strain conditions were developed and the solutions agreed well with the computational results. The analytical effective stress intensity factor solutions for kinked cracks were compared with the computational results at small kink lengths. The results indicate that the computational results approach to the analytical solutions as the kink length decreases to a small value. Finally, the analytical stress intensity factor solutions for welds in lap-shear specimens of two dissimilar sheets were presented graphically and validated by finite element analyses for convenient fracture and fatigue analyses. The transition thickness ratios and weld widths for different combinations of dissimilar materials were also presented. Experimental results were presented to demonstrate the usefulness of the solutions for predicting failure locations.
机译:研究了LiFePO4电池单元和组件标本在面内约束压缩下的力学行为,以模拟挤压条件下的电池单元,组件和电池组。实验的应力-应变曲线与电池和模块样品的变形模式相关。开发了分析解决方案以估计屈曲应力,并为将来的代表性体积元胞和模块标本设计提供了理论基础。建立了一个物理运动学模型,用于在电池单元中形成扭结和剪切带,以解释面内约束压缩下分层电池单元的变形机理。还进行了小型模块约束冲头压痕测试,以对计算结果进行基准测试。计算结果表明,宏观均质化材料模型可用于模拟挤压条件下的电池模块。研究了在有和没有粘接剂的镁和钢板搭接剪切试样中超声点焊的疲劳行为和破坏模式。对于超声点焊搭接剪切试样,破坏模式从低循环载荷条件下的局部熔核拉拔模式转变为高循环载荷条件下的扭结裂纹破坏模式。对于粘接和焊接的搭接剪切试样,测试结果分别显示了在低循环和高循环载荷条件下的近界面内聚破坏模式和扭结裂纹破坏模式。然后,建立了三种不同板面搭接试样在平面应变条件下主裂纹的解析有效应力强度因子解,该解与计算结果吻合良好。将扭结裂纹的解析有效应力强度因子解与小扭结长度下的计算结果进行了比较。结果表明,当扭结长度减小到较小值时,计算结果接近解析解。最后,以图形方式给出了两个异种板的搭接剪切试样中焊缝的分析应力强度因子解,并通过有限元分析进行了验证,以方便进行断裂和疲劳分析。还介绍了不同材料的不同组合的过渡厚度比和焊缝宽度。提出了实验结果以证明该解决方案对于预测故障位置的有用性。

著录项

  • 作者

    Lai, Wei-Jen.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Materials Science.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 274 p.
  • 总页数 274
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号