首页> 外文学位 >Membrane Protein Incorporation into Nano-Bioelectronics: An insight into Rhodopsin Controlled SiNW-FET Devices.
【24h】

Membrane Protein Incorporation into Nano-Bioelectronics: An insight into Rhodopsin Controlled SiNW-FET Devices.

机译:膜蛋白结合到纳米生物电子学中:对视紫红质控制的SiNW-FET器件的深入了解。

获取原文
获取原文并翻译 | 示例

摘要

Biological systems use different energy sources to interact with their environments by creating ion gradients, membrane electric potentials, or a proton motive force to accomplish strikingly complex tasks on the nanometer length scale, such as energy harvesting, and whole organism replication. Most of this activity involves a vast arsenal of active and passive ion channels, membrane receptors and ion pumps that mediate complex and precise transport across biological membranes. Despite the remarkable rate of progress exhibited by modern microelectronic devices, they still cannot compete with the efficiency and precision of biological systems on the component level. At the same time, the sophistication of these molecular machines provides an excellent opportunity to use them in hybrid bioelectronic devices where such a combination could deliver enhanced electronic functionality and enable seamless bi-directional interfaces between man-made and biological assemblies.;Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex-vivo devices such as electronic biosensors, thin-film protein arrays, or bio-fuel cells. Since most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In our work, we have explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes.;One-dimensional inorganic nanostructures, which have critical dimensions comparable to the sizes of biological molecules, form an excellent materials platform for building such integrated structures. Researchers already use silicon nanowire-based field effect transistors functionalized with molecular recognition sites in a diverse array of biosensors. In our group, we have been developing a platform for integration of membrane protein functionality and electronic devices using a 1-D phospholipid bilayer device architecture. In these devices, the membrane proteins reside within the lipid bilayer that covers a nanowire channel of a field-effect transistor. This lipid bilayer performs several functions: it shields the nanowire from the solution species; it serves as a native-like environment for membrane proteins and preserves their functionality, integrity, and even vectorality. In this work, we show that a 1-D bilayer device incorporating a rhodopsin proton pump allows us to couple light-driven proton transport to a bioelectronic circuit. We also report that we were able to adapt another distinctive feature of biological signal processing---their widespread use of modifiers, co-factors, and mediator molecules---to regulate and fine-tune the operational characteristics of the bioelectronic device. In our example, we use co-assembly of protein channels and ionophores in the 1-D bilayer to modify the device output levels and response time.
机译:生物系统通过创建离子梯度,膜电势或质子原动力,使用不同的能源与环境相互作用,以完成纳米级的惊人复杂任务,例如能量收集和整个生物体复制。大部分活动涉及大量主动和被动离子通道,膜受体和离子泵,这些介质介导了跨生物膜的复杂而精确的运输。尽管现代微电子设备取得了令人瞩目的进步,但它们仍无法在组件级别上与生物系统的效率和精度相抗衡。同时,这些分子机器的先进性为在混合生物电子设备中使用它们提供了绝佳的机会,其中这种组合可以提供增强的电子功能并实现人造组件与生物组件之间的无缝双向接口。使研究人员能够在接近自然环境的基质中研究膜蛋白的结构和功能,并将这些蛋白整合到体外装置中,例如电子生物传感器,薄膜蛋白阵列或生物燃料电池。由于大多数膜蛋白具有载体功能,因此功能研究和应用都需要有效控制脂质双层内的蛋白方向。在我们的工作中,我们探索了在脂质体形成过程中双层表面电荷在确定跨膜蛋白方向和功能中的作用。我们在电荷相反和电荷密度不同的脂质体中重建了模型矢量离子泵蛋白视紫红质,并确定了最终的蛋白质方向。抗体结合测定和蛋白脂质体的蛋白水解显示了优先取向的物理证据,功能测定证实了该系统中离子转运的载体性质。我们的结果表明,脂质成分的操作确实可以控制脂质体中不对称带电的膜蛋白,视紫红质的方向。;一维无机纳米结构的临界尺寸可与生物分子的大小相媲美,形成了绝佳的材料平台建立这样的集成结构。研究人员已经在各种生物传感器中使用了具有分子识别位点功能的基于硅纳米线的场效应晶体管。在我们的小组中,我们正在开发使用1-D磷脂双层设备体系结构整合膜蛋白功能和电子设备的平台。在这些设备中,膜蛋白驻留在脂质双层中,该双层覆盖了场效应晶体管的纳米线通道。这种脂质双层具有多种功能:将纳米线与溶液物质隔离开来;它可作为膜蛋白的天然环境,并保留其功能,完整性,甚至是载体性。在这项工作中,我们表明结合了视紫红质子质子泵的一维双层设备使我们能够将光驱动的质子传输耦合到生物电子电路。我们还报告说,我们能够适应生物信号处理的另一个独特特征-它们广泛使用的修饰剂,辅助因子和介导分子-来调节和微调生物电子设备的操作特性。在我们的示例中,我们在1-D双层中使用蛋白质通道和离子载体的共同组装来修改设备的输出水平和响应时间。

著录项

  • 作者

    Tunuguntla, Ramya.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号