首页> 外文学位 >Increased Anatomical Specificity for Neuromodulation Using Modulated Focused Ultrasound.
【24h】

Increased Anatomical Specificity for Neuromodulation Using Modulated Focused Ultrasound.

机译:使用调制聚焦超声提高神经调节的解剖学特异性。

获取原文
获取原文并翻译 | 示例

摘要

Transcranial ultrasound can alter brain function transiently and nondestructively, offering a new tool to study brain function now and to inform future therapies. Previous research on neuromodulation implemented pulsed low-frequency ultrasound with spatial peak temporal average intensities (ISPTA) of 0.1-10 W/cm2. That work used transducers that either insonified relatively large volumes of mouse brain (several mL) with relatively low-frequency ultrasound and produced bilateral motor responses, or relatively small volumes of brain (on the order of 0.06 mL) with relatively high-frequency ultrasound that produced unilateral motor responses. However, these previous studies have no modality for explaining how the ultrasound causes activation in the brain, and furthermore their ultrasound protocols do not allow for the precise activation that is required for the proper study of neuromodulation. This study seeks to increase anatomical specificity to neuromodulation with modulated focused ultrasound (mFU) as well as to provide an explanation for how the stimulation occurs biologically. We hypothesize that we can induce focal, central and associated peripheral activity in the motor cortex of primates using mFU in a manner comparable to electrical stimulation and capable of direct measurement by ECoG because we believe that neuromodulatory ultrasound stimulation of the brain excites neural circuits by depolarizing cells through the motor deformation of ion channels. Here, 'modulated' means modifying a focused 2-MHz carrier signal dynamically with a 500-kHz signal as in vibro-acoustography, thereby creating a low-frequency but small volume source of neuromodulation. We have shown that application of transcranial mFU to lightly anesthetized mice produces various motor movements with high spatial selectivity (on the order of 1 mm) that scales with the temporal average ultrasound intensity. Alone, mFU and focused ultrasound (FUS) each induce motor activity, including unilateral motions, though anatomical location and type of motion varied. We then moved to a primate model to determine the relative efficacy of mFU compared to electrical stimulation. Furthermore, our studies aimed to determine the biophysical processes through which they act. Currently, it is difficult to record neural activity after electric stimulation in the first few milliseconds after action potential onset due to various electrical problems. We have shown in vitro that with focused ultrasound, these problems can be bypassed. We explored the effects of this ultrasound applied to the brain by observing the resulting electrical activity induced through mechanical stimulation. We monitored neural excitation within our best approximation of the motor strip. Also of interest has been exploration of the potential research and clinical applications for targeted, transcranial neuromodulation created by modulated focused ultrasound, especially mFU's ability to produce compact sources of ultrasound at the very low frequencies (10-100s of Hertz) that correlate to the natural frequencies of the brain.
机译:经颅超声可以暂时性和非破坏性地改变脑功能,为研究现在的脑功能和为将来的治疗提供信息提供了新工具。以前对神经调节的研究采用空间峰值时间平均强度(ISPTA)为0.1-10 W / cm2的脉冲低频超声。这项工作所使用的换能器要么通过相对较低的超声频率对相对较大体积的小鼠大脑(几毫升)产生声波,并产生双侧运动反应,要么对相对较小的大脑(相对体积为0.06 mL)的大脑进行相对较高的频率超声。产生单方面的运动反应。但是,这些先前的研究没有方法来解释超声波是如何引起大脑激活的,而且它们的超声协议也不允许进行正确的神经调节研究所需的精确激活。这项研究旨在通过调制聚焦超声(mFU)来提高神经调节的解剖学特异性,并为这种刺激如何在生物学上发生提供解释。我们假设我们可以使用mFU以与电刺激相当的方式诱导灵长类动物运动皮层的局灶,中枢和相关外围活动,并且能够通过ECoG直接测量,因为我们相信大脑的神经调节超声刺激会通过去极化来激发神经回路细胞通过马达使离子通道变形。在这里,“调制”是指像振动声像仪一样用500 kHz信号动态修改聚焦的2 MHz载波信号,从而创建低频但体积较小的神经调节源。我们已经表明,将经颅mFU应用于轻度麻醉的小鼠会产生各种具有高空间选择性(大约1毫米)的运动,这些运动随时间平均超声强度变化。尽管解剖位置和运动类型各不相同,但单独使用mFU和聚焦超声(FUS)都会诱发运动活动,包括单方面运动。然后,我们移至灵长类动物模型,以确定mFU与电刺激相比的相对功效。此外,我们的研究旨在确定它们发挥作用的生物物理过程。目前,由于各种电问题,在动作电位发作后的最初几毫秒内很难记录电刺激后的神经活动。我们已经在体外证明了使用聚焦超声可以避免这些问题。我们通过观察由机械刺激引起的电活动,探索了这种超声应用于大脑的效果。我们在电机带的最佳近似范围内监控了神经激励。还感兴趣的是探索由调制聚焦超声产生的针对性,经颅神经调节的潜在研究和临床应用,尤其是mFU在与自然相关的非常低的频率(10-100赫兹)下产生紧凑型超声源的能力。大脑的频率。

著录项

  • 作者

    Mehic, Edin.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Biomedical engineering.;Medical imaging.;Neurosciences.
  • 学位 Masters
  • 年度 2014
  • 页码 44 p.
  • 总页数 44
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号