首页> 外文学位 >Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive.
【24h】

Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive.

机译:壁虎启发的纤维状胶粘剂的制备和表征。

获取原文
获取原文并翻译 | 示例

摘要

Over the last decade, geckos' remarkable ability to stick to and climb surfaces found in nature has motivated a wide range of scientific interest in engineering gecko-mimetic surface for various adhesive and high friction applications. The high adhesion and friction of its pads have been attributed to a complex array of hairy structures, which maximize surface area for van der Waals interaction between the toes and the counter-surface. While advances in micro- and nanolithography technique have allowed fabrication of increasingly sophisticated gecko mimetic surfaces, it remains a challenge to produce an adhesive as robust as that of the natural gecko pads. In order to rationally design gecko adhesives, understanding the contact behavior of fibrillar interface is critical.;The first chapter of the dissertation introduces gecko adhesion and its potential applications, followed by a brief survey of gecko-inspired adhesives. Challenges that limit the performance of the current adhesives are presented. In particular, it is pointed out that almost all testing of gecko adhesives have been on clean, smooth glass, which is ideal for adhesion due to high surface energy and low roughness. Surfaces in application are more difficult to stick to, so the understanding of failure modes in low energy and rough surfaces is important.;The second chapter presents a fabrication method for thermoplastic gecko adhesive to be used for a detailed study of fibrillar interfaces. Low-density polyethylene nanofibers are replicated from a silicon nanowire array fabricated by colloidal lithography and metal-catalyzed chemical etching. This process yields a highly ordered array of nanofibers over a large area with control over fiber diameter, length, and number density. The high yield and consistency of the process make it ideal for a systematic study on factors that affect adhesion and friction of gecko adhesives.;The following three chapters examine parameters that affect macroscale friction of fibrillar adhesives. Basic geometric factors, namely fiber length and diameter, are optimized on smooth glass for high friction. The test surfaces are then processed to intentionally introduce roughness or lower the surface energy in a systematic and quantifiable manner, so that the failure mechanisms of the adhesive can be investigated in detail. In these studies, observed macroscale friction is related to the nano-scale contact behavior with simple mechanical models to establish criteria to ensure high performance of fibrillar adhesives.;Chapter 6 presents various methods to produce more complex fiber structures. The metal-assisted chemical etching of silicon nanowires is studied in detail, where the chemical composition of the etching bath can be varied to produce clumped, tapered, tilted, and curved nanowires, which provide interesting templates for molding and are potentially useful for applications in various silicon nanowire devices. Hierarchical fiber structures are fabricated by a few different methods, as well as composite structures where the fibers are embedded in another material. A way to precisely control tapering of microfibers is demonstrated, and the effect of tapering on macroscale friction is studied in detail. The final chapter summarizes the dissertation and suggests possible future works for both further investigating fibrillar interfaces and improving the current gecko adhesive.
机译:在过去的十年中,壁虎在自然界发现的粘着和攀爬表面的非凡能力激发了人们对各种粘合剂和高摩擦力应用的壁虎模拟表面工程学的广泛科学兴趣。护垫的高附着力和摩擦力归因于复杂的毛状结构阵列,这些结构使脚趾与反面之间的范德华相互作用的表面积最大化。虽然微光刻和纳米光刻技术的进步已允许制造越来越复杂的壁虎模拟表面,但要生产与天然壁虎垫一样坚固的粘合剂仍然是一个挑战。为了合理设计壁虎粘合剂,了解原纤维界面的接触行为至关重要。本论文的第一章介绍了壁虎粘合剂及其潜在的应用,然后对壁虎胶粘剂进行了简要概述。提出了限制当前粘合剂性能的挑战。特别要指出的是,几乎所有壁虎粘合剂的测试都是在干净,光滑的玻璃上进行的,由于高的表面能和低的粗糙度,它是粘合的理想选择。应用中的表面更难以粘附,因此了解低能量和粗糙表面的破坏模式非常重要。第二章介绍了热塑性壁虎粘合剂的制造方法,该方法可用于详细研究原纤维界面。低密度聚乙烯纳米纤维是从通过胶体光刻和金属催化化学蚀刻制造的硅纳米线阵列中复制而来的。此过程可在大面积上产生高度有序的纳米纤维阵列,并控制纤维直径,长度和数量密度。该方法的高产率和高一致性使其非常适合系统地研究影响壁虎胶粘剂粘附和摩擦的因素。以下三章探讨了影响原纤维胶粘剂宏观摩擦的参数。基本几何因素(即纤维长度和直径)在光滑玻璃上进行了优化,以实现高摩擦。然后对测试表面进行处理,以有系统地,可量化的方式有意引入粗糙度或降低表面能,从而可以详细研究粘合剂的破坏机理。在这些研究中,观察到的宏观摩擦与纳米尺度的接触行为有关,并通过简单的机械模型来建立标准以确保纤维状胶粘剂的高性能。第六章介绍了各种方法来生产更复杂的纤维结构。对硅纳米线的金属辅助化学刻蚀进行了详细研究,其中刻蚀浴的化学成分可以变化,以产生簇状,锥形,倾斜和弯曲的纳米线,这些纳米线为成型提供了有趣的模板,并可能用于各种硅纳米线器件。分层纤维结构是通过几种不同的方法制造的,以及将纤维嵌入另一种材料中的复合结构。演示了一种精确控制微纤维锥度的方法,并详细研究了锥度对宏观摩擦的影响。最后一章对论文进行了总结,并提出了进一步研究原纤维界面和改善现有壁虎胶粘剂的可能的未来工作。

著录项

  • 作者

    Kim, Yongkwan.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号