首页> 外文学位 >Viscoelastic and interfacial mechanisms of cell-matrix interactions in dynamic environments.
【24h】

Viscoelastic and interfacial mechanisms of cell-matrix interactions in dynamic environments.

机译:动态环境中细胞-基质相互作用的粘弹性和界面机制。

获取原文
获取原文并翻译 | 示例

摘要

This work addresses the mechanisms underlying the interfacial interactions between cells and a surrounding biopolymer matrix. During their growth process, cells are surrounded by an Extracellular Matrix (ECM) that plays a critical role in cell development, since it provides physical support, regulates cell attachment and migration, and transports nutrients and biochemical signaling compounds. The morphology, lineage specification, and phenotypic expression are all affected by the surrounding environment.;The traditional method of cell growth and manipulation in a laboratory employs 2-D geometries where cells are attached to a substrate. This method has several limitations and does not emulate the in vivo environment. A 3-D ECM provided by a polymeric network can provide better cellular support and maintain the metabolism and functionality of surviving cells. The mechanical characteristics, chemical components and surface morphology of a 3-D polymer cell matrix can be tailored to address specific requirements for cell growth and development. When cells are embedded in a biocompatible synthetic ECM, the architecture of the biomaterial could transduce the physical stimuli exerted on the matrix in the form of compression, tension or shear. Compared to regulating the cell development process via biochemical pathways, using mechanical stimuli would be less complicated in application. The integrated mechanical stimuli is more controllable overall, the applied force can be precise, and the response is fast. Once the mechanisms of how physical stimuli contribute to the differential expression of cell phenotypes and what amount is needed for certain lineage specification, one can design programmable physical inputs during cell growth.;For the purpose of acquiring a thorough understanding of the impact of mechanical stimuli transduced to cells by an ECM, a closer examination of the cell-matrix interfacial interactions can provide valuable insights. We have developed both experimental and computational tools to study such mechanisms. A systematic investigation of how the embedment of cells influences the structure and rheology of biocompatible polymeric matrices in a dynamic environment is conducted to decipher the effect of shear-induced changes in the microstructure on physical properties such as viscosity, elastic/loss moduli, and gelation temperature.
机译:这项工作解决了细胞与周围的生物聚合物基质之间的界面相互作用的潜在机理。在它们的生长过程中,细胞被细胞外基质(ECM)包围,该物质在细胞发育中起着至关重要的作用,因为它提供物理支持,调节细胞附着和迁移以及运输营养物质和生化信号传导化合物。形态,谱系规范和表型表达均受周围环境的影响。实验室中传统的细胞生长和处理方法采用二维几何结构,其中细胞附着在基质上。该方法具有一些局限性,并且不能模拟体内环境。聚合物网络提供的3-D ECM可以提供更好的细胞支持,并维持存活细胞的新陈代谢和功能。可以定制3-D聚合物细胞基质的机械特性,化学成分和表面形态,以满足细胞生长和发育的特定要求。当细胞被嵌入到生物相容性合成ECM中时,生物材料的结构可以转导以压缩,拉伸或剪切形式施加在基质上的物理刺激。与通过生化途径调节细胞发育过程相比,使用机械刺激在应用中将更为简单。整体机械刺激总体上更可控,所施加的力可以精确,并且响应速度快。一旦发现了物理刺激如何促进细胞表型差异表达的机制以及某些谱系规格所需的量,就可以在细胞生长过程中设计可编程的物理输入。为了全面了解机械刺激的作用,通过ECM转导至细胞,仔细检查细胞-基质界面相互作用可以提供有价值的见解。我们已经开发了实验和计算工具来研究这种机制。对细胞嵌入如何影响动态环境中生物相容性聚合物基质的结构和流变性进行了系统的研究,以破译微结构中剪切诱导的变化对物理特性(如粘度,弹性/损耗模量和凝胶化)的影响温度。

著录项

  • 作者

    Liu, Yating.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Engineering Chemical.;Engineering Biomedical.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2014
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号