首页> 外文学位 >Student application of the fundamental theorem of calculus with graphical representations in mathematics and physics.
【24h】

Student application of the fundamental theorem of calculus with graphical representations in mathematics and physics.

机译:数学和物理中图形表示的微积分基本定理的学生应用。

获取原文
获取原文并翻译 | 示例

摘要

One mathematical concept frequently applied in physics is the Fundamental Theorem of Calculus (FTC). Mathematics education research on student understanding of the FTC indicates student difficulties with the FTC. Similarly, a few studies in physics education have implicitly indicated student difficulties with various facets of the FTC, such as with the definite integral and the area under the curve representation, in physics contexts. There has been no research on how students apply the FTC in graphically-based physics questions.;This study investigated student understanding of the FTC and its application to graphically-based problems. Our interest spans several aspects of the FTC: student difficulties, problem-solving strategies, and visual attention.;Written and interview findings revealed student difficulties common to mathematics and physics, e.g., confusion between the antiderivative difference and the function difference. Three problem-solving strategies were identified: algebraic, graphical, and integral. For a deeper analysis of problem-solving strategies, we applied the perspectives of epistemological framing (student expectations/perceptions) and epistemic games (problem-solving games). While most observed frames and epistemic games were somewhat modified versions of those previously reported, we identified one new game: the equation-based analytical game. In addition, a novel eye-tracking study was conducted to explore students' visual attention to different parts of graphically-based FTC questions. Results indicated that students' visual behavior was affected by the representations in the questions, such as the presence or absence of certain equation(s) and/or graphical feature(s), as well as context (math vs. physics). Because student responses seemed to be both conceptually and salient-feature driven, the results were explained using the cognitive perspectives of top-down (conceptually driven) and bottom-up (feature-driven) processes.;Eye-tracking results provided support for interview findings about problem-solving strategies. For many students, the absence of specific visual cues led to a particular framing of the problem that was associated with inappropriate e-games for that problem. Minor interviewer prompting often enabled students to reframe a problem and invoke relevant knowledge and strategies, suggesting that students possess knowledge of individual facets of the FTC, but this knowledge may not be elicited by a particular problem representation(s). Additionally, specific difficulties can be seen as due to inappropriate problem framing.
机译:物理学中经常使用的一种数学概念是微积分的基本定理(FTC)。关于学生对FTC理解的数学教育研究表明,学生在FTC方面遇到困难。同样,在物理教育中,一些物理教育研究隐含地指出了学生在FTC各个方面的困难,例如,在数学环境中,定积分和曲线表示下的面积。尚未有关于学生如何将FTC应用于基于图形的物理问题的研究。;本研究调查了学生对FTC的理解及其在基于图形的问题中的应用。我们的兴趣涵盖了FTC的多个方面:学生的困难,解决问题的策略和视觉注意力。;书面和面试的结果揭示了学生在数学和物理上常见的困难,例如,反导数差异和功能差异之间的混淆。确定了三种解决问题的策略:代数,图形和积分。为了对解决问题的策略进行更深入的分析,我们采用了认识论框架(学生的期望/感知)和认知游戏(问题解决游戏)的观点。尽管大多数观察到的框架和认知游戏是先前报道的框架的改进版本,但我们确定了一种新游戏:基于方程的分析游戏。此外,进行了一项新颖的眼动追踪研究,以探索学生对基于图形的FTC问题不同部分的视觉关注。结果表明,学生的视觉行为受到问题表示形式的影响,例如是否存在某些方程式和/或图形特征以及上下文(数学与物理)。因为学生的回答似乎是概念上和显着特征驱动的,所以使用自上而下(概念驱动)和自下而上(特征驱动)过程的认知角度来解释结果。眼动追踪结果为面试提供了支持解决问题策略的发现。对于许多学生而言,缺乏特定的视觉线索导致了该问题的特定框架,而该框架与针对该问题的不合适的电子游戏有关。次要面试官的提示通常使学生能够重新构造问题并调用相关的知识和策略,这表明学生具有FTC各个方面的知识,但是特定问题的表示可能无法激发出这种知识。此外,特定的困难可以看作是由于不适当的问题框架。

著录项

  • 作者

    Bajracharya, Rabindra R.;

  • 作者单位

    The University of Maine.;

  • 授予单位 The University of Maine.;
  • 学科 Education Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 300 p.
  • 总页数 300
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号