首页> 外文学位 >Glucuronidase Immobilized in Nanoparticles for Use in Site Specific Activation of Anti-Cancer Glucuronide Prodrugs.
【24h】

Glucuronidase Immobilized in Nanoparticles for Use in Site Specific Activation of Anti-Cancer Glucuronide Prodrugs.

机译:固定在纳米颗粒中的葡糖醛酸糖苷酶用于位点特异性激活抗癌葡糖苷酸前药。

获取原文
获取原文并翻译 | 示例

摘要

The site-specific treatment of cancer can reduce the toxic side effects of chemotherapy. This thesis reviews current techniques and describes a nanotechnology approach to investigate some of the obstacles in site-specific drug targeting and activation. One site-specific approach is antibody-directed enzyme prodrug therapy, ADEPT. For this strategy, a targeting antibody directed against a tumor antigen is connected to an activating enzyme. For this project, beta-glucuronidase was selected as the activating enzyme and glucuronide prodrugs, of known highly potent chemotherapeutic agents, were selected as enzyme substrates. Prodrug-activating enzymes localizing exclusively at a tumor site, with tumor-specific targeting nanoparticles, minimizes the exposure of active chemotherapeutic agents. Because of the inactivity of glucuronide prodrugs, this treatment does not kill healthy cells.;This thesis reviews current techniques on glucuronide production and is a description of a beta-glucuronidase immobilization in nanoparticles procedure that investigates some of the obstacles in site-specific drug activation. Chapter I is an introduction to glucuronides, the glucuronidation procedure, and enzyme immobilization. Chapter II is a description of the glucuronidation of 4-nitrophenol, epirubicin, and homoharringtonine. It begins with the synthesis of 4-nitrophenyl-glucuronide. 4-Nitrophenol is a classic substrate for glucuronidation, is easy to prepare, and was used to evaluate the conditions for glucuronide formation and cleavage with beta-glucuronidase in nanoparticles. Formation of free p-nitrophenol was determined by HPLC with UV detection.;Homoharringtonine (HHT, Omacetine, Synribo(TM)), a highly potent chemotherapy agent, was initially chosen for an anti-cancer glucuronide prodrug for activation with beta-glucuronidase embedded in nanoparticles. HHT's aliphatic alcohol may be conjugated with beta-D-glucuronic acid, either by chemical or biosynthetic methods, to produce the desired glucuronide. A glucuronide of Homoharringtonine has not been reported in literature and its production is of interest for researchers to pharmaceutically evaluate a new anti-cancer glucuronide prodrug. Since HHT is such a potent cancer drug, it would be of interest to compare the cleavage of HHT-glucuronide by beta-glucuronidase to a well-studied compound such as epirubicin glucuronide; that has been evaluated as ADEPT stragety.;Unfortunately, synthetic methods (the Koenig-Knorr reaction, failed to produce the desired HHT-glucuronide. Consequently, experiments with beta-glucuronidase entrapped-nanoparticles were conducted with p-nitrophenol glucuronide and epirubicin glucuronide. When preparations of a glucuronide of HHT fail, due to steric hindrance, epirubicin is chosen as an alternative. Epirubicin glucuronide is mostly not activated by beta-glucuronidase endogenous in microbial bio-flora within humans or naturally produced beta-glucuronidase within human liver and other tissues (Hasima, H.J.,et al. 1992). Lack of promiscuity in glucuronide cleavage is possible to be beneficial in retaining site-specific activation. The production of epirubicin glucuronide is catalyzed by the human enzyme UDP-Glucuronosyltransferase 2B7 (UGT 2B7), in the liver (Innocenti, F., et al 2001).;Toxic side effects of chemotherapeutic drugs are overcome with their glucuronides by localizing activity to a target tumor site with the activating enzyme encapsulated in a nanoparticle, in-vivo. After biosynthesis and HPLC purification of the anti-cancer glucuronide prodrug epirubicin glucuronide, cleavage by beta-Glucuronidase was tested in-vitro. A large amount of enzyme (100 U/ml of glucuronidase in 4mM phosphate buffer pH=6.8) is needed to activate the prodrug. An added benefit of protein encapsulation is to prevent proteins being recognized as foreign in-vivo and consequently degraded.;In Chapter III, a suitable polymer for encapsulation of glucuronidase is alginic acid cross-linked with the addition of calcium ions, displacing sodium, forming alginate nanoparticles. The materials produce nano-droplet sized emulsions and the denaturing of protein and reduction of enzyme activity is not significant (Nesamony, J., et al. 2012). Optimization of the polymerizing procedure and material concentrations produce a nanoparticle size range appropriate for protein drug delivery. Sodium alginate, polymerization by the displacement of sodium ions with cross-linking calcium ions, is effective for the entrapment of beta-glucuronidase that produces active microparticles (Burgess, D. J., and S. Ponsart. 1998). The strongly polar property of alginate is a suitable environment for activity during entrapment in nanoparticles. Active glucuronidase immobilization in nanoparticles is produced and an increase in activity, over standalone beta-glucuronidase, is shown in-vitro. Nanoparticle targeting strategies outlined, in Chapter IV, with the future directions sections of this paper complete the thesis.
机译:癌症的特定部位治疗可以减少化学疗法的毒副作用。本文回顾了当前的技术,并描述了一种纳米技术方法来研究特定部位药物靶向和激活中的一些障碍。一种位点特异性方法是抗体指导的酶前药疗法ADEPT。对于该策略,将针对肿瘤抗原的靶向抗体与活化酶连接。对于该项目,选择β-葡萄糖醛酸苷酶作为活化酶,并选择已知高效的化学治疗剂葡萄糖醛酸苷前药作为酶底物。仅具有肿瘤特异性靶向纳米颗粒的仅位于肿瘤部位的前药激活酶可将活性化疗剂的暴露降至最低。由于葡糖醛酸前药的无活性,这种治疗方法不会杀死健康细胞。;本文综述了目前生产葡糖醛酸的技术,并描述了纳米颗粒固定β-葡糖醛酸酶的方法,该方法研究了特定部位药物活化中的一些障碍。 。第一章介绍了葡糖醛酸苷,葡糖醛酸化过程和酶固定化。第二章描述了4-硝基苯酚,表柔比星和高harringtonine的葡萄糖醛酸。它始于4-硝基苯基-葡糖醛酸苷的合成。 4-硝基苯酚是用于葡萄糖醛酸化的经典底物,易于制备,并且用于评估纳米颗粒中葡萄糖醛酸苷形成和被β-葡萄糖醛酸苷酶裂解的条件。游离对硝基苯酚的形成是通过具有UV检测的HPLC来确定的;最初选择高haringingtonringtonine(HHT,Omacetine,Synribo(TM))这种高效的化疗药物作为抗癌葡糖苷酸前体药物,以嵌入β-葡糖醛酸苷酸酶进行激活。在纳米颗粒中。 HHT的脂族醇可以通过化学或生物合成方法与β-D-葡糖醛酸结合,以产生所需的葡糖醛酸。同源harringtonine的葡萄糖醛酸苷尚未在文献中报道,其产生对于研究人员在药物学上评估新的抗癌葡萄糖醛酸苷前药具有兴趣。由于HHT是一种有效的抗癌药物,因此有必要比较一下β-葡萄糖醛酸苷酶对HHT-葡萄糖醛酸苷与经过充分研究的化合物(例如表柔比星葡萄糖醛酸苷)的裂解。不幸的是,合成方法(Koenig-Knorr反应未能产生所需的HHT-葡糖醛酸苷。)因此,用包埋有β-葡糖醛酸苷酶的纳米颗粒进行了对硝基酚葡糖醛酸苷和表柔比星葡糖苷酸的实验。当HHT的葡糖醛酸的制备由于空间位阻而失败时,选择表柔比星作为替代品,表柔比星葡糖苷酸通常不会被人体内微生物生物区系的内源性β-葡糖醛酸苷酶激活,也不会被人肝和其他体内天然产生的β-葡糖醛酸苷酶激活。组织(Hasima,HJ,et al。1992)。缺乏葡萄糖醛酸苷切割的杂乱性可能有利于保留位点特异性活化。表柔比星葡萄糖醛酸苷的产生是由人类酶UDP-葡萄糖醛酸转移酶2B7(UGT 2B7)催化的,在肝脏中的作用(Innocenti,F.,et al 2001).;局部用葡萄糖苷酸可克服化学治疗药物的毒性副作用封装在纳米粒子中的激活酶在体内具有对靶肿瘤部位的活性。在抗癌葡糖醛酸苷前药表柔比星葡糖醛酸苷的生物合成和HPLC纯化之后,体外测试了β-葡糖醛酸苷酶的切割。需要大量的酶(在4mM磷酸盐缓冲液中pH = 6.8的100 U / ml葡萄糖醛酸酶)来激活前药。蛋白质封装的另一个好处是可以防止蛋白质在体内被识别为异物,并因此而降解。;在第三章中,用于封装葡糖醛酸糖苷酶的合适聚合物是藻酸,其通过添加钙离子交联,置换钠,形成海藻酸盐纳米颗粒。该材料可产生纳米液滴大小的乳液,蛋白质的变性和酶活性的降低并不明显(Nesamony,J.,et al。2012)。聚合程序和材料浓度的优化产生了适合蛋白质药物递送的纳米粒度范围。海藻酸钠通过取代钠离子与交联的钙离子而发生聚合,对于截留产生活性微粒的β-葡萄糖醛酸苷酶是有效的(Burgess,D. J.和S. Ponsart。1998)。海藻酸盐的强极性性质是在纳米粒中截留期间进行活性的合适环境。体外产生了将活性葡萄糖醛酸苷酶固定在纳米颗粒中的活性,并且与单独的β-葡萄糖醛酸苷酶相比,活性增加。第四章概述了纳米粒子靶向策略,并在本文的未来发展方向中完成了本论文。

著录项

  • 作者

    Hoverman, Mitchell James.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Biomedical.
  • 学位 M.S.
  • 年度 2014
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号