首页> 外文学位 >Optimization of laser-produced plasmas for nanolithography and materials detection.
【24h】

Optimization of laser-produced plasmas for nanolithography and materials detection.

机译:优化用于纳米光刻和材料检测的激光产生等离子体。

获取原文
获取原文并翻译 | 示例

摘要

In this work, laser-matter interactions and resultant plasma emission using traditional short pulsed lasers are studied in the context of semiconductor lithography and material sensing applications. Ultrafast laser ablation and plasma emission results are then compared to those using traditional short pulsed lasers. Then fundamental laser-matter interactions and ablation processes of ultrafast lasers are investigated.;This work focuses on laser-produced plasma (LPP) light sources at extreme ultraviolet (EUV) wavelengths. The out-of-band (OoB) light emission as well as ionic and atomic debris from the plasma source, which are capable of damaging collection optics, have been studied as a function of incident laser wavelength to characterize the angular distributions of debris and identify the differences in debris from longer and shorter laser excitation wavelengths. By applying a prepulse to create improved laser-target coupling conditions, conversion efficiency (CE) from laser energy to 13.5 nm light emission from the plasma source can be improved by 30% or higher. Energetic ions escaping from the plasma can cause significant damage to light collection optics, greatly reducing their lifetimes, but by implementing a prepulse, it has been shown that most-probable ion energies can be reduced significantly, minimizing damage caused to collection optics.;Laser-induced breakdown spectroscopy (LIBS) is a technique used to identify the elemental constituents of unknown samples by studying the optical light spectra emitted from a LPP. Despite advantages such as in situ capabilities and near-instant results, detection limits of LIBS systems are not as competitive as other laboratory-based systems. To overcome such limitations, a double pulse (DP) LIBS system is arranged using a long-wavelength laser for the second pulse and heating of the plume created by the first pulse. Detector gating parameters were optimized and different first-pulse laser energies were investigated to study improvements with increasing mass ablation. The long-wavelength laser does not increase mass ablation in DP-LIBS and through optimization, it is found that maximum enhancements are observed for cases of smallest mass ablation; an important consideration for analysis of delicate samples. For bulk element analysis, enhancements of 14 and 10 times for S/N and S/B, respectively, are seen, and for trace element analysis, enhancements of 7 and 3 times for S/N and S/B, respectively, are seen.;Due to extremely short pulse durations, the ablation mechanisms for ultrafast lasers are not fully understood, meaning their implementation in existing and novel laser applications are hindered. The differences in visible emission dynamics from nanosecond (ns) and femtosecond (fs) laser ablation (LA) plumes are reported and the effects that vacuum and ambient pressure environments play on plasma plume expansion dynamics.;Lastly, a fundamental study of ultrafast laser ablation is performed to better understand ablation mechanisms and resultant plasma plume properties. Under ns laser ablation, ion time of flight analysis typically shows a single-peak profile, however, under fs laser ablation a double-peak profile is observed and the source of the faster peak is heavily disputed. To better understand the nature of the fast peak, ion time of flight profiles are investigated for several high-purity metals under ns and fs laser irradiation. Ion peak velocities are compared to material thermal properties to confirm the thermal nature of the slower peak observed under fs laser ablation and its correlation to the ns laser ablation results. The faster ion peak from fs laser ablation does not show any relation to thermal properties and in fact shows similar velocity for all elements investigated, despite widely varying atomic mass. The results combine to confirm the non-thermal nature of the fast ion peak observed under ultrafast laser ablation. (Abstract shortened by UMI.).
机译:在这项工作中,在半导体光刻和材料感测应用的背景下,研究了使用传统的短脉冲激光的激光物质相互作用以及由此产生的等离子体发射。然后将超快激光烧蚀和等离子体发射结果与使用传统短脉冲激光器的结果进行比较。然后研究了超快激光的基本激光物质相互作用和烧蚀过程。这项工作的重点是在极紫外(EUV)波长的激光产生等离子体(LPP)光源。研究了等离子体源的带外(OoB)发射以及离子和原子碎片,它们会损坏收集光学器件,并随入射激光波长的变化而变化,以表征碎片的角度分布并确定较长和较短激光激发波长的碎片差异。通过施加预脉冲来创建改善的激光目标耦合条件,可以将激光能量转换为等离子体源发出的13.5 nm发光的转换效率(CE)提高30%或更高。从等离子体中逸出的高能离子可能会严重损坏聚光光学器件,从而大大缩短其使用寿命,但是通过施加预脉冲,已证明可以最大程度地降低最有可能的离子能量,从而将对聚光学器件造成的损害降至最低。诱导击穿光谱法(LIBS)是一种用于通过研究LPP发射的光谱来识别未知样品的元素组成的技术。尽管具有诸如现场能力和接近即时的结果之类的优势,但LIBS系统的检出限并不像其他基于实验室的系统那样具有竞争力。为了克服这样的限制,使用长波长激光对第二脉冲和加热由第一脉冲产生的羽流布置双脉冲(DP)LIBS系统。优化了探测器的选通参数,并研究了不同的第一脉冲激光能量,以研究随着质量消融增加的改进。长波长激光不会增加DP-LIBS中的质量消融,并且通过优化发现,对于最小质量消融的情况,观察到了最大的增强。精细样品分析的重要考虑因素。对于块元素分析,S / N和S / B分别提高了14倍和10倍,对于痕量元素分析,对于S / N和S / B分别提高了7倍和3倍由于极短的脉冲持续时间,超快激光器的烧蚀机制尚未得到充分理解,这意味着它们在现有和新型激光器应用中的实现受到阻碍。报告了纳秒级(ns)和飞秒(fs)激光烧蚀(LA)羽流可见发射动力学的差异,以及真空和环境压力环境对等离子体羽流膨胀动力学的影响。最后,超快激光烧蚀的基础研究为了更好地了解消融机制和所产生的等离子羽流特性而进行的实验。在ns激光烧蚀下,离子飞行时间分析通常显示单峰轮廓,但是在fs激光烧蚀下观察到双峰轮廓,并且较快峰的来源备受争议。为了更好地理解快速峰的性质,在ns和fs激光照射下研究了几种高纯度金属的离子飞行时间曲线。将离子峰速度与材料的热性能进行比较,以确认在fs激光烧蚀下观察到的较慢峰的热性质及其与ns激光烧蚀结果的相关性。尽管原子质量差异很大,但fs激光烧蚀产生的更快的离子峰与热性能没有任何关系,并且实际上对所有研究元素显示出相似的速度。结果结合在一起,证实了在超快激光烧蚀下观察到的快离子峰的非热性质。 (摘要由UMI缩短。)。

著录项

  • 作者

    Freeman, Justin R.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Physics Fluid and Plasma.;Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号