首页> 外文学位 >Correlation-based Transition Modeling for External Aerodynamic Flows.
【24h】

Correlation-based Transition Modeling for External Aerodynamic Flows.

机译:外部空气动力流的基于相关性的过渡建模。

获取原文
获取原文并翻译 | 示例

摘要

Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion.;In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that is not captured with conventional turbulence models.;The validated transition model is successfully applied to rotating blade configurations in axial flow conditions to study the effects of transitional boundary layers on rotor thrust and torque. In helicopter rotors, inclusion of transition effects increased thrust prediction by 2% and decreased torque by as much as 8% at lower collective angles, due to reduced airfoil profile drag. In wind turbine rotors, transition model predicted a 7%--70% increase in generated shaft torque at lower wind speeds, due to lower viscous drag. This has important implications for CFD analysis of small wind turbines operating at low values of rated power. Transition onset locations along upper and lower surfaces of rotor blades are analyzed in detail.;A new crossflow transition onset criterion is developed to account for crossflow instability effects in three-dimensional boundary layers. Preliminary results for swept wing and rotating blade flows demonstrate the need to account for crossflow transition in three-dimensional simulations of wings, rotating blades, and airframes. Inclusion of crossflow effects resulted in accelerated transition in the presence of favorable pressure gradients and yawed flow. Finally, a new correction to the wall damping function in the Spalart-Allmaras turbulence model is proposed to improve sensitivity of the model to strong adverse pressure gradients (APG). The correction reduces turbulence production in the boundary layer when the ratio of magnitudes of local turbulent stress to the wall shear stress exceeds a threshold value, therefore enabling earlier separation of boundary layer. Improved prediction of static and dynamic stall on two-dimensional airfoils is demonstrated with the APG correction.
机译:针对完全湍流边界层进行校准的常规湍流模型通常会高估具有部分层状边界层的空气动力学表面上的阻力和热传递。开发了一个基于相关性的鲁棒模型,用于雷诺平均Navier-Stokes模拟中,以预测外部空气动力学表面上边界层的层流到湍流过渡开始。新模型是从现有的两方程k-ω剪切应力传递(SST)湍流模型的过渡模型派生而来,并与一方程式Spalart-Allmaras(SA)湍流模型耦合。过渡模型求解了两个运输方程,用于求解间歇性和过渡动量厚度雷诺数。在模型中使用实验相关性和局部平均流量来说明自由流湍流水平和压力梯度对过渡开始位置的影响。通过使用涡旋雷诺数准则激活间歇产生来触发转变开始;在新模型中,对间歇方程的产生和破坏项进行了修改,以改善转变后开始时完全湍流边界层的一致性,并确保不敏感至SA模型中指定的自由涡流粘度值。在原始模型中,间歇性用于控制湍动能的产生和破坏。而在新模型中,仅控制SA模型中涡流粘度的产生,并且破坏项不变。与原始模型不同,新模型不对间隔引起的过渡使用额外的校正。通过在多种雷诺数范围内的多个二维单元素和多元素翼型案例中使用过渡模型,可以大大提高阻力预测的准确性。新模型能够预测低雷诺数机翼上稳定且长的层流分离气泡的形成,而传统的湍流模型无法捕获这种低雷诺数的机翼。经过验证的过渡模型已成功应用于轴向流条件下的旋转叶片构型,以研究过渡边界层对转子推力和转矩的影响。在直升飞机的旋翼中,由于减小了翼型轮廓阻力,在较低的集合角处,过渡效果的加入将推力预测值提高了2%,将扭矩降低了8%。在风力涡轮机转子中,过渡模型预测,由于较低的粘性阻力,在较低风速下产生的轴转矩会增加7%-70%。这对于在低额定功率下运行的小型风力涡轮机的CFD分析具有重要意义。详细分析了沿转子叶片上表面和下表面的过渡起始位置。;开发了新的横流过渡起始准则,以解决三维边界层中的横流不稳定性影响。掠过的机翼和旋转叶片流动的初步结果表明,需要在机翼,旋转叶片和机身的三维模拟中考虑横流过渡。在存在有利的压力梯度和偏航流的情况下,包含横流效应导致加速过渡。最后,提出了对Spalart-Allmaras湍流模型中壁阻尼函数的新校正,以提高模型对强逆压力梯度(APG)的敏感性。当局部湍流应力的大小与壁切应力的比值超过阈值时,该校正减小了边界层中的湍流产生,因此使得能够较早地分离边界层。通过APG校正,改进了对二维机翼静态和动态失速的预测。

著录项

  • 作者

    Medida, Shivaji.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.;Physics Fluid and Plasma.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号