首页> 外文学位 >Controlled assembly of metal nanoparticles with enhanced optical properties.
【24h】

Controlled assembly of metal nanoparticles with enhanced optical properties.

机译:具有增强的光学性能的金属纳米颗粒的受控组装。

获取原文
获取原文并翻译 | 示例

摘要

Controlled synthesis of metal nanoparticles is an important area of study because of the unique size and shape dependent properties of such nanoparticles. For example, gold and silver nanoparticles show distinct surface Plasmon resonance (SPR) bands varying with the size, shape and surface morphology of the nanoparticles. The assembly of these nanoparticles usually exhibit interesting collective optical properties different from their individual components. However, controlled synthesis and assembly of metal nanoparticles with high yield and enhanced optical properties is still challenging. In this thesis, I presented the synthesis of ultrathin gold/silver nanowires and sub-50 nm gold triangular nanoprisms by adopting silver seeds and benzyl dimethyl hexadecyl ammonium chloride (BDAC) in a seed-mediated growth method. Furthermore, I developed a templated surfactant-assisted seed growth method to synthesize gold nanoshells with varying surface morphologies by changing the type of surfactants and ions in the growth solution. The optical properties of the nanoshells could be controlled over a wide wavelength range by varying the surface morphology. By using a combination of BDAC surfactant and template surfactant-assisted seed growth method, isotropic shell-type gold nanoparticle clusters, or raspberry-like meta-molecules (raspberry-MMs), were successfully synthesized. The raspberry-MMs exhibited interesting far field and near field optical properties. The raspberry-MMs showed unusually strong magnetic resonances, yielding broad SPR bands in the visible and near-IR region. Both experimental data and finite-difference time-domain (FDTD) simulations showed that the magnetic dipole can be even larger than that of the electric dipole resonance in large raspberry-MMs. Moreover, I utilized Raman spectroscopy as a tool to probe the near field optical properties of the raspberry-MMs. Due to the existence of a large number of hotspots at the gaps among gold beads within individual raspberry-MMs, individual raspberry-MMs proved to be efficient Raman substrate. Importantly, the contribution from hotspots created at the gap between two adjacent raspberry-MMs is negligible compared to that from a large number of hotspots on individual raspberry-MMs. Consequently, the Raman signal intensity of the analyte molecules on the raspberry-MM dimers exhibited quite narrow distribution and is weakly dependent on the distance between the two raspberry-MMs. This paved the way for fabricating large-area raspberry-MM films which can serve as macroscopic efficient and reproducible Raman substrate. The robustness and tunability of the synthetic method presented in this thesis, the strong magnetic responses of the raspberry-MMs and the efficient Raman enhancement from single raspberry-MM, raspberry-MM dimer and films can lead to large-scale manufacture and wide applications of magnetic metamaterials as well as commercialization of uniform Raman substrate.
机译:金属纳米颗粒的受控合成是重要的研究领域,因为此类纳米颗粒具有独特的尺寸和形状依赖性。例如,金和银纳米颗粒显示出不同的表面等离子体共振(SPR)带,随纳米颗粒的大小,形状和表面形态而变化。这些纳米颗粒的组装通常表现出有趣的集体光学性质,这些性质不同于它们各自的成分。然而,具有高产率和增强的光学性质的金属纳米颗粒的受控合成和组装仍然是挑战。在这篇论文中,我介绍了通过种子介导的生长方法,采用银种子和苄基二甲基十六烷基氯化铵(BDAC)合成超薄金/银纳米线和亚50 nm金三角纳米棱镜。此外,我开发了一种模板化的表面活性剂辅助种子生长方法,通过改变生长溶液中表面活性剂和离子的类型来合成具有不同表面形态的金纳米壳。可以通过改变表面形态在很宽的波长范围内控制纳米壳的光学特性。通过结合使用BDAC表面活性剂和模板表面活性剂辅助种子生长方法,成功合成了各向同性的壳型金纳米颗粒簇或覆盆子状大分子(raspberry-MMs)。覆盆子-MM表现出有趣的远场和近场光学特性。覆盆子型MM表现出异常强的磁共振,在可见光和近红外区域产生宽SPR谱带。实验数据和时域有限差分(FDTD)仿真均表明,在较大的覆盆型MM中,磁偶极子可能比电偶极子共振大。此外,我利用拉曼光谱作为探测树莓MM的近场光学特性的工具。由于在单个树莓-MM中金珠之间的间隙处存在大量热点,因此,单个树莓-MM被证明是有效的拉曼底物。重要的是,与单个树莓型MM上的大量热点相比,在两个相邻树莓型MM之间的间隙处产生的热点的贡献可忽略不计。因此,树莓-MM二聚体上分析物分子的拉曼信号强度显示出很窄的分布,并且几乎不依赖于两个树莓-MM之间的距离。这为制造大面积的覆盆子MM膜铺平了道路,该膜可以用作宏观有效且可复制的拉曼底物。本文提出的合成方法的鲁棒性和可调谐性,树莓-MM的强磁响应以及单个树莓-MM,树莓-MM二聚体和薄膜的有效拉曼增强可导致大规模生产和广泛应用。磁性超材料以及均匀拉曼衬底的商业化。

著录项

  • 作者

    Qian, Zhaoxia.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Physical chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 310 p.
  • 总页数 310
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号