首页> 外文学位 >Thermodynamics and crystallography of the gamma→epsilon→alpha' transformation in feMnAlSic steels.
【24h】

Thermodynamics and crystallography of the gamma→epsilon→alpha' transformation in feMnAlSic steels.

机译:FeMnAlSic钢中γ→ε→α′相变的热力学和晶体学。

获取原文
获取原文并翻译 | 示例

摘要

FeMnAlSiC steels which exhibit two-stage transformation induced plasticity (TRIP) behavior characterized by the gamma→epsilon→alpha' dual stage martensitic transformation promise to take a leading role in the development of 3rd generation advanced high strength steels. The crystallographic orientation relationship of the gamma→alpha' and gamma→epsilon athermal martensitic transformations in these steels has been determined as the Kurdjumov-Sachs and the Shoji-Nishiyama, respectively. Six crystallographic variants of alpha-martensite consisting of three twin-related variant pairs were observed in epsilon-bands. A planar parallelism of {0001}epsilon || {110}alpha' and a directional relation of alpha' lying within 1° of epsilon existed for these variants. Two regular solution models have been developed to describe the thermodynamics for the gamma→epsilon, gamma→alpha', and subsequent epsilon→alpha' martensitic transformations which best described the behavior and microstructure of various FeMnAlSiC TRIP compositions when compared against other thermodynamic models from literature. The role of available nucleating defects of critical size, n*, has been linked to the intrinsic stacking fault energy (SFE) necessary to observe the athermal gamma→epsilon transformation and it is thus proposed that the amount of epsilon-martensite in the quenched microstructure is a function of material processing history as well as thermodynamic driving force. The developed thermodynamic model has been used to optimize alloy compositions that produce ideal two-stage TRIP behavior. Compositions with Al contents near 1.5 wt% adequately balance epsilon- and alpha-martensite start temperatures such that retained austenite is expected upon quenching to room temperature while also maintaining adequate transformation driving forces to ensure full two-stage TRIP behavior.
机译:表现出以γ→ε→α′双相马氏体相变为特征的两相转变诱导塑性(TRIP)行为的FeMnAlSiC钢有望在第三代高强度高强度钢的开发中发挥主导作用。这些钢中的γ→α′和γ→ε无热马氏体转变的晶体取向关系已分别确定为Kurdjumov-Sachs和Shoji-Nishiyama。在ε带中观察到由三对孪生相关变体对组成的六个α-马氏体晶体学变体。 {0001}ε||的平面平行度对于这些变体,存在{110}α′和α′的方向关系在ε的1°以内。已经开发了两个常规的溶液模型来描述γ→ε,γ→α'以及随后的ε→α'马氏体转变的热力学,与文献中的其他热力学模型相比,它们最能描述各种FeMnAlSiC TRIP成分的行为和微观结构。 。临界尺寸n *的可用成核缺陷的作用已与观察无热γ→ε转变所必需的固有堆垛层错能(SFE)有关,因此建议在淬火的微观结构中ε-马氏体的含量是材料加工历史以及热力学驱动力的函数。已开发的热力学模型已用于优化产生理想的两阶段TRIP行为的合金成分。 Al含量接近1.5wt%的组合物充分平衡了ε-马氏体起始温度和α-马氏体起始温度,使得在淬火至室温时预期残留奥氏体,同时还保持足够的转变驱动力以确保完全的两阶段TRIP行为。

著录项

  • 作者

    Pisarik, Scott Thomas.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Materials science.;Mechanics.
  • 学位 M.S.
  • 年度 2014
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号