首页> 外文学位 >Superconducting Nanobridge SQUID Magnetometers for Spin Sensing.
【24h】

Superconducting Nanobridge SQUID Magnetometers for Spin Sensing.

机译:超导纳米桥SQUID磁力计用于自旋感应。

获取原文
获取原文并翻译 | 示例

摘要

As the cutting edge of science and technology pushes towards smaller length scales, sensing technologies with nanoscale precision become increasingly important. In this thesis I will discuss the optimization and application of a 3D nanobridge SQUID magnetometer for studying solid state spin systems, in particular for sensing impurity spins in diamond. Solid state spins have proposed applications in memory and computation for both classical and quantum computing. Isolated spins typically have longer coherence times, making them attractive qubit candidates, but necessitating the development of very sensitive detectors for readout.;This 3D nanobridge SQUID combines the exquisite spatial sensitivity of a traditional nanoSQUID with a large non-linearity on par with a tunnel junction SQUID. This allows us to build a highly sensitive magnetometer which can act as both an efficient flux transducer as well as a nearly quantum limited lumped Josephson Parametric Amplifier. We show that the device has a minimum flux noise of 17 +/- 0.9 nphi0/Hz1/2 with only a factor of ∼2.5 increase in flux noise up to 61 mT. A second generation device with a smaller capacitor achieves field tolerance up to 75 mT. The maximal bandwidth values range from 25-40 MHz in the parametric amplification regime to 70 MHz in the linear regime. This combination of large bandwidth, low flux noise, large flux coupling and field tolerance make this sensor a promising candidate for near-single-spin dynamics measurements.;In the last part of this thesis we begin to demonstrate the utility of a nanobridge SQUID magnetometer for characterizing spin systems in the solid state. We use the magnetometer to measure the decay characteristics of P1 centers in diamond. We find that the spin-lattice relaxation time varies with temperature, with an order of magnitude decrease in the decay time between 25 mK and 370 mK.
机译:随着科学技术的前沿向着更小的长度尺度发展,具有纳米尺度精度的传感技术变得越来越重要。在本文中,我将讨论用于研究固态自旋系统(尤其是用于感应金刚石中的杂质自旋)的3D纳米桥SQUID磁力计的优化和应用。固态自旋已经提出了在经典计算和量子计算的存储器和计算中的应用。孤立的自旋通常具有更长的相干时间,使其成为有吸引力的量子位候选者,但必须开发非常灵敏的检测器以进行读出。该3D纳米桥SQUID结合了传统nanoSQUID的精美空间灵敏度和与隧道相当的大非线性度交界处SQUID。这使我们能够构建一个高度灵敏的磁力计,该磁力计既可以用作有效的磁通量传感器,也可以用作近乎量子限制的集总Josephson参数放大器。我们显示该器件的最小磁通噪声为17 +/- 0.9 nphi0 / Hz1 / 2,在高达61 mT的磁通噪声中仅增加了约2.5倍。具有较小电容器的第二代设备可实现高达75 mT的磁场耐受性。最大带宽值范围从参数放大方案中的25-40 MHz到线性方案中的70 MHz。大带宽,低通量噪声,大通量耦合和磁场容限的结合使该传感器成为进行近单旋转动力学测量的有前途的候选者。在本文的最后一部分,我们开始演示纳米桥SQUID磁力计的实用性用于表征固态自旋系统。我们使用磁力计来测量钻石中P1中心的衰减特性。我们发现,自旋晶格弛豫时间随温度而变化,衰减时间在25 mK和370 mK之间减小一个数量级。

著录项

  • 作者

    Antler, Natania.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Condensed matter physics.;Low temperature physics.;Quantum physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号