首页> 外文学位 >Processing of neural signals in the Drosophila olfactory system.
【24h】

Processing of neural signals in the Drosophila olfactory system.

机译:在果蝇嗅觉系统中处理神经信号。

获取原文
获取原文并翻译 | 示例

摘要

The fruit fly Drosophila melanogaster has recently emerged as an important model organism for the study of neural circuits. This preparation has several advantages: flies have a smaller number of neurons than many other experimental organisms, and researchers have developed a wide array of genetic tools and the ability to record from neurons in vivo. The early olfactory system of Drosophila has turned out to be one of the most tractable circuits to investigate, and much has been learned about its architecture, physiological mechanisms, and responses to sensory stimuli. However, much is still unknown about how the elements in the circuit operate and what overall role the circuit serves. Here I describe my research into how neural signals are processed by the early olfactory circuit. Using imaging and electrophysiological data, I built a passive compartmental model of a second-order olfactory neuron to analyze how electrical signals spread throughout the cell. I found that the neurons are electrotonically extensive and that the presynaptic neurons likely distribute their synaptic contacts across the postsynaptic dendritic tree to form strong synapses. In addition, I investigated the mechanisms underlying the relatively depolarized resting membrane potential in these cells. I also contributed to a collaborative project in which we analyzed the transformation of the odor representation between first- and second-order neurons. We found that processing in the antennal lobe influences second-order neuron odor responses, and that a linear decoder can more easily discriminate between odors using the responses of the second-order neurons. Finally, I discuss a project in which I attempted to alter synaptic function in the circuit to assess its effects on odor processing. Together, these results contribute to a more complete understanding of the processing of sensory information by the brain.
机译:果蝇果蝇最近已成为研究神经回路的重要模型生物。这种制备方法具有几个优点:与许多其他实验有机体相比,果蝇具有较少的神经元,研究人员已经开发了多种遗传工具,并具有在体内从神经元进行记录的能力。果蝇的早期嗅觉系统已被证明是最易于研究的回路之一,并且已经对其结构,生理机制以及对感觉刺激的反应学到了很多。然而,关于电路中的元件如何工作以及电路所起的总体作用仍然未知。在这里,我描述了我对早期嗅觉回路如何处理神经信号的研究。利用成像和电生理数据,我建立了一个二级嗅觉神经元的被动隔室模型,以分析电信号如何在整个细胞内传播。我发现神经元是电声广泛的,并且突触前神经元可能将它们的突触接触分布在整个突触后树突树上,形成强突触。另外,我研究了这些细胞中相对去极化的静止膜电位的潜在机制。我还参与了一个合作项目,其中我们分析了一阶和二阶神经元之间气味表示的转换。我们发现触角叶中的处理会影响二阶神经元的气味反应,并且线性解码器可以使用二阶神经元的反应更容易地区分气味。最后,我讨论了一个项目,在该项目中我试图更改回路中的突触功能,以评估其对气味处理的影响。总之,这些结果有助于更完整地理解大脑对感官信息的处理。

著录项

  • 作者

    Gouwens, Nathan William.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号