首页> 外文学位 >Advanced III-V / Si nano-scale transistors and contacts: Modeling and analysis.
【24h】

Advanced III-V / Si nano-scale transistors and contacts: Modeling and analysis.

机译:先进的III-V / Si纳米级晶体管和触点:建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and strained-Si in planar FETs and triple-gate non-planar FinFETs. (2) to demonstrate whether or not these technologies are viable alternatives to Si and conventional planar FETs. The simulation results indicate that III-V FETs do not outperform Si FETs in the ballistic transport regime, and triple-gate FinFETs surely represent the best architecture for sub-15nm gate contacts, independently from the choice of channel material.;This work also proves that the contact resistance becomes a limiting factor of device performance as it takes larger fraction of the total on-state resistance. Hence, contact resistance must be reduced to meet the next ITRS requirements. However, from a modeling point of view, the understanding of the contacts still remains limited due to its size and multiple associated scattering effects, while the intrinsic device performance can be projected. Therefore, a precise theoretical modeling is required to advance optimized contact design to improve overall device performance. In this work, various factors of the contact resistances are investigated within realistic contact-to-channel structure of III-V quantum well field-effect transistors (QWFET). The key finding is that the contact-to-channel resistance is mainly caused by structural reasons: 1) barriers between multiple layers in the contact region 2) Schottky barrier between metal and contact pad. These two barriers work as bottleneck of the system conductance. The extracted contact resistance matches with the experimental value. The approximation of contact resistance from quantum transport simulation can be very useful to guide better contact designs of the future technology nodes.;The theoretical modeling of these nano-scale devices demands a proper treatment of quantum effects such as the energy-level quantization caused by strong quantum confinement of electrons and band structure non-parabolicity. 2-D and 3-D quantum transport simulator that solves non-equilibrium Green's functions (NEGF) transport and Poisson equations self-consistently within a real-space effective mass approximation. The sp3d5s* empirical tight-binding method is employed to include non-parabolicity to obtain more accurate effective masses in confined nano-structures. The accomplishment of this work would aid in designing, engineering and manufacturing nano-scale devices, as well as next-generation microchips and other electronics with nano-scale features.
机译:Si CMOS技术的指数小型化一直是电子革命的关键。然而,栅极长度的连续缩小成为保持更高速度,更低功率和更好的静电完整性的最大挑战。因此,人们认为,新颖的器件和比Si更好的沟道材料可以改善金属氧化物半导体场效应晶体管(MOSFET)的器件性能。 III-V化合物半导体和多栅极结构被认为是下一代CMOS技术的有希望的候选者。研究了不同架构的III-V和Si纳米级晶体管(1),以比较III-V化合物半导体的InGaAs和应变Si在平面FET和三栅极非平面FinFET中的性能。 (2)证明这些技术是否可以替代Si和常规平面FET。仿真结果表明,III-V FET在弹道传输方式方面不优于Si FET,并且三栅极FinFET无疑代表了15nm以下栅极接触的最佳架构,而与沟道材料的选择无关。接触电阻成为器件性能的限制因素,因为它占了总导通电阻的很大一部分。因此,必须降低接触电阻才能满足下一个ITRS要求。但是,从建模的角度来看,由于其尺寸和多个关联的散射效应,对触点的理解仍然受到限制,而可以预测内部器件的性能。因此,需要精确的理论模型来推进优化的触点设计,以提高整体设备性能。在这项工作中,在III-V量子阱场效应晶体管(QWFET)的实际接触通道结构中研究了接触电阻的各种因素。关键发现是,接触沟道电阻主要由结构原因引起:1)接触区域中多层之间的势垒2)金属与接触垫之间的肖特基势垒。这两个障碍是系统电导的瓶颈。提取的接触电阻与实验值匹配。量子传输模拟中的接触电阻近似值对指导未来技术节点的更好接触设计非常有用。这些纳米级器件的理论建模要求对量子效应(如能级量子化引起的能级量子化)进行适当处理。电子的强量子限制和能带结构的非抛物线性。 2-D和3-D量子传输模拟器,可以在真实空间有效质量近似值内自洽地求解非平衡格林函数(NEGF)传输和泊松方程。 sp3d5s *经验紧密绑定方法用于包含非抛物线形,以在受限的纳米结构中获得更准确的有效质量。这项工作的完成将有助于设计,工程和制造纳米级设备,以及下一代具有纳米级功能的微芯片和其他电子产品。

著录项

  • 作者

    Park, Seung Hyun.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Nanotechnology.;Electrical engineering.;Quantum physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号