首页> 外文学位 >Investigation of metal oxide dielectrics for non-volatile floating gate and resistance switching memory applications.
【24h】

Investigation of metal oxide dielectrics for non-volatile floating gate and resistance switching memory applications.

机译:用于非易失性浮栅和电阻开关存储应用的金属氧化物电介质的研究。

获取原文
获取原文并翻译 | 示例

摘要

Floating gate transistor based flash memories have seen more than a decade of continuous growth as the prominent non-volatile memory technology. However, the recent trends indicate that the scaling of flash memory is expected to saturate in the near future. Several alternative technologies are being considered for the replacement of flash in the near future. The basic motivation for this work is to investigate the material properties of metal oxide based high-k dielectrics for potential applications in floating gate and resistance switching memory applications. This dissertation can be divided into two main sections. In the first section, the tunneling characteristics of the SiO2/HfO 2 stacks were investigated. Previous theoretical studies for thin SiO 2/ thick high-k stacks predict an increase in tunneling current in the high-bias regime (better programming) and a decrease in the low-bias regime (better retention) in comparison to pure SiO2 of same equivalent oxide thickness (EOT). However, our studies indicated that the performance improvement in SiO2/HfO2 stacks with thick HfO2 layer is difficult due to significant amount of charge traps in thick HfO2 layers. Oxygen anneal on the stacks did not improve the programming current and retention. X-ray photoelectron spectroscopy (XPS) studies indicated that this was due to formation of an interfacial oxide layer. The second part of the dissertation deals with the investigation of resistive switching in metal oxides. Although promising, practical applications of resistive random access memories (RRAM) require addressing several issues including high forming voltage, large operating currents and reliability. We first investigated resistive switching in HfTiOx nanolaminate with conventional TiN electrodes. The forming-free switching observed in the structures could be described by the quantum point contact model. The modelling results indicated that the forming-free characteristics can be due to a higher number of filaments in comparison to a device that requires forming. Forming-free resistive switching with low current operation in graphene-insulator-graphene structures was also investigated. Electrical as well as Raman and XPS analysis indicated that low current operation is due to the migration and subsequent physisorption of oxygen ions on the graphene surface during the set operation. A statistical model was also developed for quantitative prediction of the effect of noise on RRAM characteristics.
机译:作为重要的非易失性存储技术,基于浮栅晶体管的闪存已经经历了十多年的持续增长。但是,最近的趋势表明,闪存的规模有望在不久的将来达到饱和。正在考虑几种替代技术,以在不久的将来替换闪存。这项工作的基本动机是研究基于金属氧化物的高k电介质的材料特性,以用于浮栅和电阻开关存储应用中的潜在应用。本文可以分为两个主要部分。在第一部分中,研究了SiO2 / HfO 2叠层的隧穿特性。先前对薄SiO 2 /厚高k叠层的理论研究预测,与相同当量的纯SiO2相比,高偏置状态下的隧穿电流增加(更好的编程),而低偏置状态下的隧穿电流减少(更好的保留)。氧化物厚度(EOT)。然而,我们的研究表明,由于在厚HfO2层中存在大量的电荷陷阱,因此很难在具有厚HfO2层的SiO2 / HfO2堆栈中提高性能。叠层上的氧气退火并没有提高编程电流和保留率。 X射线光电子能谱(XPS)研究表明,这是由于形成了界面氧化物层。论文的第二部分主要研究金属氧化物的电阻转换。尽管有希望,但电阻式随机存取存储器(RRAM)的实际应用需要解决几个问题,包括高成形电压,大工作电流和可靠性。我们首先研究了使用传统TiN电极的HfTiOx纳米层压板的电阻转换。可以通过量子点接触模型来描述在结构中观察到的无成形转换。建模结果表明,与需要成型的设备相比,无成型特性可能归因于更多的细丝。还研究了石墨烯-绝缘体-石墨烯结构中低电流运行的无成形电阻开关。电学分析以及拉曼分析和XPS分析表明,低电流操作是由于在设定操作期间氧离子在石墨烯表面上的迁移和随后的物理吸附。还开发了统计模型,用于定量预测噪声对RRAM特性的影响。

著录项

  • 作者

    Chakrabarti, Bhaswar.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Engineering Materials Science.;Nanotechnology.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号