首页> 外文学位 >Methodes de decomposition pour la planification a moyen terme de la production hydroelectrique sous incertitude.
【24h】

Methodes de decomposition pour la planification a moyen terme de la production hydroelectrique sous incertitude.

机译:不确定性下水电生产中期计划的分解方法。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we consider the midterm production planning problem (MTPP) of hydroelectricity generation under uncertainty. The aim of this problem is to manage a set of interconnected hydroelectric reservoirs over several months. We are particularly interested in high dimensional reservoir systems that are operated by large hydroelectricity producers such as Hydro-Quebec. The aim of this thesis is to develop and evaluate different decomposition methods for solving the MTPP under uncertainty. This thesis is divided in three articles.;The first article demonstrates the applicability of the progressive hedging algorithm (PHA), a scenario decomposition method, for managing hydroelectric reservoirs with multiannual storage capacity under highly variable operating conditions in Canada. The PHA is a classical stochastic optimization method designed to solve general multistage stochastic programs defined on a scenario tree. This method works by applying an augmented Lagrangian relaxation on non-anticipativity constraints (NACs) of the stochastic program. At each iteration of the PHA, a sequence of subproblems must be solved. Each subproblem corresponds to a deterministic version of the original stochastic program for a particular scenario in the scenario tree. Linear and a quadratic terms must be included in subproblem's objective functions to penalize any violation of NACs. An important limitation of the PHA is due to the fact that the number of subproblems to be solved and the number of penalty terms increase exponentially with the branching level in the tree. This phenomenon can make the application of the PHA particularly difficult when the scenario tree covers several tens of time periods. Another important limitation of the PHA is caused by the fact that the difficulty level of NACs generally increases as the variability of scenarios increases. Consequently, applying the PHA becomes particularly challenging in hydroclimatic regions that are characterized by a high level of seasonal and interannual variability. These two types of limitations can slow down the algorithm's convergence rate and increase the running time per iteration. In this study, we apply the PHA on Hydro-Quebec's power system over a 92-week planning horizon. Hydrologic uncertainty is represented by a scenario tree containing 6 branching stages and 1,635 nodes. The PHA is especially well-suited for this particular application given that the company already possess a deterministic optimization model to solve the MTPP.;The second article presents a new approach which enhances the performance of the PHA for solving general Mstochastic programs. The proposed method works by applying a multiscenario decomposition scheme on the stochastic program. Our heuristic method aims at constructing an optimal partition of the scenario set by minimizing the number of NACs on which an augmented Lagrangean relaxation must be applied. Each subproblem is a stochastic program defined on a group of scenarios. NACs linking scenarios sharing a common group are represented implicitly in subproblems by using a group-node system index instead of the traditional scenario-time index system. Only the NACs that link the different scenario groups are represented explicitly and relaxed. The proposed method is evaluated numerically on an hydroelectric reservoir management problem in Quebec. The results of this experiment show that our method has several advantages. Firstly, it allows to reduce the running time per iteration of the PHA by reducing the number of penalty terms that are included in the objective function and by reducing the amount of duplicated constraints and variables. In turn, this allows to reduce the running time per iteration of the algorithm. Secondly, it allows to increase the algorithm's convergence rate by reducing the variability of intermediary solutions at duplicated tree nodes. Thirdly, our approach reduces the amount of random-access memory (RAM) required for storing Lagrange multipliers associated with relaxed NACs.;The third article presents an extension of the L-Shaped method designed specifically for managing hydroelectric reservoir systems with a high storage capacity. The method proposed in this paper enables to consider a higher branching level than conventional decomposition method enables. To achieve this, we assume that the stochastic process driving random parameters has a memory loss at time period t = tau. Because of this assumption, the scenario tree possess a special symmetrical structure at the second stage (t > tau). We exploit this feature using a two-stage Benders decomposition method. Each decomposition stage covers several consecutive time periods. The proposed method works by constructing a convex and piecewise linear recourse function that represents the expected cost at the second stage in the master problem. The subproblem and the master problem are stochastic program defined on scenario subtrees and can be solved using a conventional decomposition method or directly. We test the proposed method on an hydroelectric power system in Quebec over a 104-week planning horizon. (Abstract shortened by UMI.).
机译:本文考虑不确定性条件下水力发电的中期生产计划问题。这个问题的目的是在几个月内管理一组相互连接的水力发电库。我们对大型水电生产商(例如魁北克水电公司)运营的高维水库系统特别感兴趣。本文的目的是开发和评估在不确定条件下求解MTPP的不同分解方法。本文共分为三章。第一章论证了情景对冲算法-渐进式对冲算法(PHA)在加拿大高运行条件下管理具有多年存储容量的水力发电库的适用性。 PHA是一种经典的随机优化方法,旨在解决方案树上定义的通用多阶段随机程序。该方法通过对随机程序的非预期约束(NAC)应用增强的拉格朗日松弛来工作。在PHA的每次迭代中,必须解决一系列子问题。每个子问题对应于方案树中特定方案的原始随机程序的确定性版本。子问题的目标函数中必须包括线性和二次项,以惩罚违反NAC的行为。 PHA的一个重要限制是由于以下事实:要解决的子问题的数量和惩罚项的数量随树中的分支级别呈指数增长。当方案树涵盖数十个时间段时,此现象会使PHA的应用特别困难。 PHA的另一个重要限制是由于NAC的难度级别通常随场景可变性的增加而增加。因此,在以季节和年际高水平变化为特征的水文气候地区,应用PHA变得尤为困难。这两种类型的限制可能会减慢算法的收敛速度并增加每次迭代的运行时间。在本研究中,我们在92周的规划期内将PHA应用于魁北克水电局的电力系统。水文不确定性由包含6个分支阶段和1,635个节点的方案树表示。鉴于公司已经拥有确定性的优化模型来解决MTPP,因此PHA特别适合于此特定应用。第二篇文章提出了一种新方法,可以提高PHA在解决一般Mstochastic程序方面的性能。所提出的方法通过在随机程序上应用多情景分解方案来工作。我们的启发式方法旨在通过最小化必须应用增强Lagrangean松弛的NAC的数量来构造场景集的最佳划分。每个子问题都是在一组场景中定义的随机程序。通过使用组节点系统索引而不是传统的方案时间索引系统,在子问题中隐式表示了链接共享公共组的方案的NAC。只有链接不同方案组的NAC才被明确表示和放宽。针对魁北克的水电储层管理问题,对所提出的方法进行了数值评估。实验结果表明,该方法具有很多优点。首先,通过减少目标函数中包含的惩罚项的数量以及减少重复约束和变量的数量,它可以减少PHA每次迭代的运行时间。反过来,这可以减少算法每次迭代的运行时间。其次,它允许通过减少重复树节点处中间解的可变性来提高算法的收敛速度。第三,我们的方法减少了存储与宽松的NAC相关的Lagrange乘法器所需的随机存取存储器(RAM)的数量。第三篇文章介绍了L型方法的扩展,该方法专门设计用于管理具有高存储容量的水电水库系统。与传统的分解方法相比,本文提出的方法能够考虑更高的分支水平。为了实现这一点,我们假设随机过程驱动随机参数在时间段t = tau处具有记忆损失。由于这个假设,方案树在第二阶段具有特殊的对称结构(t> tau)。我们使用两阶段Benders分解方法来利用此功能。每个分解阶段涵盖几个连续的时间段。所提出的方法通过构造凸和分段线性追索函数来工作,该函数表示主问题第二阶段的预期成本。子问题和主问题是在方案子树上定义的随机程序,可以使用常规分解方法或直接解决。我们在104周的规划期内在魁北克的水力发电系统上测试了该方法。 (摘要由UMI缩短。)。

著录项

  • 作者

    Carpentier, Pierre-Luc.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Operations Research.;Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号