首页> 外文学位 >The development of computational methods for designing antibodies and other proteins.
【24h】

The development of computational methods for designing antibodies and other proteins.

机译:设计抗体和其他蛋白质的计算方法的发展。

获取原文
获取原文并翻译 | 示例

摘要

Proteins are polymers of amino acids that have essential and diverse roles in organisms, including: structure (e.g. actin), catalysis of chemical reactions (e.g. cytochrome p450), and signaling (e.g. insulin-like growth factor I). Given the wide range of functions that proteins fulfill in nature, there is much interest in utilizing them for human needs in many areas, such as biofuels production, materials, and medicine. However, nature rarely provides a protein that is perfect for a specific human application, necessitating the use of engineering methods to improve or create desired properties. Computations are an essential tool for the de novo design of proteins. This dissertation focuses on the use of antibodies as a model protein system to develop de novo protein design methods. Due to their many useful experimental and medicinal applications, antibody structures and their natural mechanisms of generation have been extensively studied. They are an excellent system for learning de novo protein design principles, as their structures have many modular features and their functions are limited to binding, not catalysis. Antigen binding by antibodies is primarily driven by the complementarity determining regions (CDRs). Models of the possible backbone conformations of the CDRs (i.e. canonical structures) were generated. These models were used in the Optimal Complementarity Determining Regions (OptCDR) method to allow the de novo design of antibody CDRs to bind any specified antigen epitope. Next, a database of Modular Antibody Parts (MAPs) analogous to the human germline genes used to make antibodies was created and shown to be able to predict antibody structures with a high degree of accuracy. Analysis of calculations involving OptCDR, MAPs, and other work outside the scope of this dissertation suggested that the computational protein engineering methods currently in use needed to be improved. This led to the development of the Iterative Protein Redesign & Optimization Suite of Programs for the (re)design of proteins. Numerous collaborations have been established to experimentally validate the computational predictions and the research is progressing towards the de novo design of fully human antibodies.
机译:蛋白质是氨基酸的聚合物,在生物体中具有至关重要的作用,包括:结构(例如肌动蛋白),催化化学反应(例如细胞色素p450)和信号转导(例如胰岛素样生长因子I)。考虑到蛋白质在自然界中所具有的广泛功能,人们非常感兴趣地在许多领域将其用于人类需求,例如生物燃料生产,材料和医学。但是,自然界很少能提供适合特定人类应用的完美蛋白质,因此必须使用工程方法来改善或创造所需的特性。计算是从头设计蛋白质的重要​​工具。本文主要研究抗体作为模型蛋白质系统的应用,以开发从头设计蛋白质的方法。由于其许多有用的实验和医学应用,已经对抗体结构及其天然生成机理进行了广泛的研究。它们是学习从头蛋白质设计原理的出色系统,因为它们的结构具有许多模块化特征,并且其功能仅限于结合而不是催化。抗体与抗原的结合主要由互补决定区(CDR)驱动。产生了CDR的可能的骨架构象的模型(即规范结构)。这些模型用于最佳互补决定区(OptCDR)方法中,可以从头设计抗体CDR结合任何指定的抗原表位。接下来,创建了一个类似于用于制造抗体的人类种系基因的模块化抗体部件(MAP)数据库,并显示出该模块能够高度准确地预测抗体结构。对涉及OptCDR,MAP和其他工作的计算的分析超出了本文的范围,这表明需要改进当前使用的计算蛋白质工程方法。这导致了用于蛋白质(重新)设计的迭代蛋白质重新设计和优化程序套件的开发。已经建立了许多合作伙伴关系来通过实验验证计算预测,并且研究正在朝着从头设计完全人抗体的方向发展。

著录项

  • 作者

    Pantazes, Robert J.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Chemical.;Biophysics General.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号