首页> 外文学位 >Electric breakdown and ionization detection in normal liquid and superfluid 4He for the SNA nEDM experiment.
【24h】

Electric breakdown and ionization detection in normal liquid and superfluid 4He for the SNA nEDM experiment.

机译:用于SNA nEDM实验的普通液体和超流4He中的电击穿和电离检测。

获取原文
获取原文并翻译 | 示例

摘要

A new experiment to search for the neutron electric dipole moment (nEDM) is under construction at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. The SNS nEDM experiment is a national collaboration spanning over 20 universities and laboratories with more than 100 physicists and engineers contributing to the research and development. The search for a nEDM is a precision test of time reversal symmetry in particle physics, in the absence of a discovery, the SNS nEDM experiment seeks to improve the present limit on the nEDM value by two orders of magnitude. A non-zero value of the nEDM would help to explain the asym- metry between matter and anti-matter in the universe by providing an additional source of charge conjugation and parity symmetry violation, a necessary ingredient in the theory of baryogenesis in the early universe.;The nEDM experiment will measure the Larmor precession frequency of neutrons by detecting scintillation from neutron capture by a dilute concentration of 3He inside a bath of superfluid 4He. Neutron capture by 3He is spin-dependent and the magnetic moments of the neutron and the 3He nucleus are comparable. A direct measurement of the precession frequency of polarized 3He and scintillation from neutron capture allows for the relative precession frequencies of 3He and the neutron to be determined. The experiment will then look for changes in the relative precession of 3He and neutrons under the influence of strong electric fields. 3He has negligible EDM and therefore any deviation due to an applied electric field would be from a nEDM.;The nEDM experiment will need to apply strong electric fields inside superfluid (SF) 4He and it was necessary to investigate the ability of SF 4He to sustain electric fields. An experiment to study electric breakdown in superfluid 4He was constructed at the Indiana University Center for Exploration of Energy and Matter (CEEM). The experiment studied the electric breakdown behavior of liquid Helium throughout the pressure-temperature phase space, between 1 bar and the saturation curve and between 4.2 K and 1.7 K. A new breakdown hysteresis in liquid helium was discovered and is attributed to the suppression of heterogeneous nucleation sites inside the liquid. A phenomenological model involving the Townsend breakdown mechanism and Paschen's Law in liquid helium is proposed.;In addition, the many challenges faced by efficient scintillation detection in the cryogenic environment of the nEDM experiment motivated additional studies at CEEM. To test the effect of an electric field on scintillation in superfluid, a SF test cell was constructed inside a dilution refrigerator and it was found that the scintil- lation intensity from a 241Am source in the cell, is reduced at high electric fields. Alternatives to scintillation detection for the nEDM experiment were also explored and the test cell was reconfigured to operate as a superfluid ionization chamber. The superfluid ionization chamber was tested with 241Am in pulse mode and current mode configurations. While the pulse mode in superfluid, which relies on the drift velocity of charges, is hindered by quasi-particle excitations in superfluid, results of current mode measurements appear promising.;To further explore the prospect of cryogenic ionization detection, a detector cryo-stat capable of detecting neutrons using a 10B converter was also constructed at CEEM and tested at the Indiana University Low Energy Neutron Source (LENS). The neutron detector cryostat has the benefit of being able to modulate the ioniza- tion source which was not possible with the superfluid ionization chamber. Tests with argon gas led to the development of more efficient boron targets. The cryogenic test of ionization detection in current mode will be discussed.
机译:橡树岭国家实验室的散裂中子源(SNS)正在建设一项寻找中子电偶极矩(nEDM)的新实验。 SNS nEDM实验是一项跨越20所大学和实验室的全国性合作项目,拥有100多名物理学家和工程师为研究和开发做出了贡献。对nEDM的搜索是对粒子物理学中时间反转对称性的精确测试,在没有发现的情况下,SNS nEDM实验试图将nEDM值的当前限制提高两个数量级。 nEDM的非零值将通过提供电荷共轭和奇偶对称违反的额外来源来解释宇宙中物质与反物质之间的不对称性,这是早期宇宙中重生理论的必要组成部分nEDM实验将通过在超流4He浴中稀释3He浓度来检测中子俘获的闪烁,从而测量中子的拉莫尔进动频率。 3He捕获的中子与自旋有关,中子与3He核的磁矩可比。对极化3He进动频率和中子俘获闪烁的直接测量可以确定3He和中子的相对进动频率。然后,实验将寻找强电场影响下3He和中子相对进动的变化。 3 He的EDM可以忽略不计,因此由于施加的电场而引起的任何偏差都可能与nEDM无关; nEDM实验将需要在超流体(SF)4He内施加强电场,因此有必要研究SF 4He的维持能力电场。在印第安纳大学能源与物质探索中心(CEEM)上进行了一项研究超流体4He电击穿的实验。该实验研究了液氦在整个压力-温度相空间中的电击穿行为,在1 bar和饱和曲线之间以及在4.2 K和1.7 K之间。发现了新的液氦击穿滞后现象,归因于其抑制了非均质性液体内部有成核点。提出了一种涉及汤森分解机理和帕森定律的液氦现象模型。此外,在nEDM实验的低温环境中有效闪烁检测所面临的许多挑战激发了CEEM的进一步研究。为了测试电场对超流体中闪烁的影响,在稀释冰箱内构造了一个SF测试单元,发现在高电场下该单元中241Am源的闪烁强度降低了。还探索了用于nEDM实验的闪烁检测替代方法,并将测试单元重新配置为可作为超​​流体电离室运行。在241Am的脉冲模式和电流模式配置下对超流体电离室进行了测试。尽管超流体中的脉冲模式依赖于电荷的漂移速度,但由于超流体中的准粒子激发而受到阻碍,但电流模式测量的结果似乎是有希望的。为了进一步探索低温电离检测的前景,一种检测器低温恒温器CEEM还构建了能够使用10B转换器检测中子的技术,并在印第安纳大学低能中子源(LENS)上进行了测试。中子探测器低温恒温器的优势在于能够调节电离源,这是超流体电离室无法实现的。用氩气进行测试导致开发出更有效的硼靶。将讨论电流模式下电离检测的低温测试。

著录项

  • 作者

    Karcz, Maciej.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Nuclear physics and radiation.;High energy physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号