首页> 外文学位 >Neural adhesion, growth, and activity on carbon nanotubes and carbonized nanofibers.
【24h】

Neural adhesion, growth, and activity on carbon nanotubes and carbonized nanofibers.

机译:在碳纳米管和碳化纳米纤维上的神经粘附,生长和活性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on how the physical and electrical properties of carbon nanotubes (CNTs) and carbonized nanofibers (CNFs) affect the physiological and electrophysiological properties of neurons and neural networks and how this may affect the efficacy of these nanomaterials as microelectrode materials. In general, the pursuit of increasing electrode sensitivity while maintaining low noise levels is addressed by investigating and utilizing novel electrode materials. Carbon nanomaterials have a native conductivity and nano-scale roughness that should decrease microelectrode noise levels and impedance by virtue of a substantially increased surface area. In addition to the beneficial microelectrode properties, these carbon nanomaterials could increase the integration of the electrode to the neural tissue.;The work here is an investigation of how selected CNT and CNF materials affect the viability, outgrowth, and adhesion of cortical neurons in vitro and how the physical and chemical properties of each substrate correlates to these measurements. The intent is that properties detailed in vitro can be assumed to extrapolate to performance in vivo assuming the same materials are utilized for invasive, implanted microelectrodes.;Carbon nanotubes were deposited by a layer-by-layer (LBL) method with poly(ethylenimine) (PEI). Carbon nanofiber substrates were prepared in conjunction with collaborators via electrospinning a photosensitive polymer (SU-8), photopatterning, and pyrolyzing the depositions. In addition to these substrates, control samples were prepared in the form of PEI-treated glass coverslips, carbonized thin films, SU-8 thin films, and SU-8 nanofibers. The primary variable between all of these substrates is the roughness or topography of each deposition (ranging from 0.26 nm to 160 nm average roughness).;Physical and chemical characteristics of the depositions are presented in addition to the electrical characteristics which make them attractive as microelectrode materials. The interaction between neurons and these substrates is investigated by attempting to characterize neural integration by way of tracking cellular outgrowth and adhesion strength.;Lastly, how carbon nanotubes and carbon nanofibers can improve upon commercial in vitro microelectrode arrays is presented. Custom carbon nanofiber pillars as microelectrodes, coupled with a layer of SU-8 as an insulator, were manufactured as in vitro microelectrode arrays for neural network recordings.
机译:本文主要研究碳纳米管(CNTs)和碳化纳米纤维(CNFs)的物理和电学性质如何影响神经元和神经网络的生理和电生理特性,以及如何影响这些纳米材料作为微电极材料的功效。通常,通过研究和利用新型电极材料来解决在保持低噪声水平的同时提高电极灵敏度的追求。碳纳米材料具有天然的电导率和纳米级粗糙度,这应通过显着增加的表面积来降低微电极的噪声水平和阻抗。除了有益的微电极特性外,这些碳纳米材料还可以增加电极与神经组织的整合。此处的工作是研究选定的CNT和CNF材料如何在体外影响皮层神经元的生存力,生长和粘附以及每种底物的物理和化学性质如何与这些测量值相关联。目的是假定在体外详述的特性可以推断出体内的性能,前提是使用相同的材​​料用于植入式有创微电极。碳纳米管是通过聚乙撑亚胺通过层(LBL)方法沉积的(PEI)。碳纳米纤维基材与协作者一起通过静电纺丝光敏聚合物(SU-8),进行光致图案化和热解沉积物来制备。除了这些基材之外,还以PEI处理的玻璃盖玻片,碳化薄膜,SU-8薄膜和SU-8纳米纤维的形式制备了对照样品。所有这些基板之间的主要变量是每次沉积的粗糙度或形貌(平均粗糙度在0.26 nm至160 nm之间)。除电学特性外,还显示了沉积物的物理和化学特性,这些特性使其可以作为微电极使用。材料。通过尝试通过跟踪细胞生长和粘附强​​度来表征神经整合,研究了神经元与这些基质之间的相互作用。最后,提出了碳纳米管和碳纳米纤维如何在商业化体外微电极阵列上得以改进。定制的碳纳米纤维柱作为微电极,再加上一层SU-8作为绝缘体,被制成体外微电极阵列,用于神经网络记录。

著录项

  • 作者

    Franca, Eric William.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Biomedical engineering.;Nanotechnology.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号