首页> 外文学位 >Evolution of virulence in staphylococcus aureus hypermutators.
【24h】

Evolution of virulence in staphylococcus aureus hypermutators.

机译:金黄色葡萄球菌超突变体中毒力的演变。

获取原文
获取原文并翻译 | 示例

摘要

Staphylococcus aureus infection levies a heavy toll on human health in hospitals and the community, a problem worsened by its recalcitrance to immune clearance and therapeutic intervention. The genetic events and host microenvironments that mediate the evolution of S. aureus from a formidable acute pathogen to one optimized for disease persistence is obscure and largely unexplored. In several pathogens of note, such as Pseudomonas aeruginosa, strains with a constitutively increased mutation frequency, termed hypermutators, are thought to accelerate pathogen fitness during chronic infection by increasing the rate at which beneficial mutations are acquired. Genotypic characterization of bacterial hypermutators show that mutations in DNA repair and error avoidance systems causes this phenotype. Although, S. aureus hypermutators have been reported from diverse infection types, their role in effecting disease pathogenesis during infection is unknown.;To investigate the potential of S. aureus hypermutators as catalysts of pathoadaptation during chronic infection, mutations were constructed in two DNA repair pathways: 1) the mismatch repair (MMR; mutS and mutL) and 2) oxidized guanine (GO; mutM, mutY, and mutT) systems. Inactivation of these DNA repair systems produces a hypermutator phenotype and alters the predominant mutational type and sites that confer rifampin resistance. Further biochemical analysis of the DeltamutM and DeltamutY using a DNA glycosylase assay, demonstrates that each mutant is defective in excising DNA lesions associated with 7,8-dihydro-8-oxo-deoxyguanine (8-oxo-dG). Despite the inability to repair this oxidative DNA lesion, neither GO nor MMR mutants display enhanced sensitivity to H2O 2 stress. In vitro analysis of evolution revealed the capacity of GO and MMR mutants to alter the production of virulence factors (staphyloxanthin and &agr;-hemolysin) and antimicrobial resistance. Genotypic characterization of alpha-hemolysin defective mutants showed that mutation at the accessory gene regulator (agr) locus contributed to this phenotype and was a mutational hotspot in all strains tested. The work provides evidence that bacterial hypermutation may represent a general mechanism employed by pathogens to undermine efforts aimed at controlling and eliminating infection.
机译:金黄色葡萄球菌感染给医院和社区的人类健康造成了沉重打击,由于其对免疫清除和治疗干预的顽固态度,这一问题更加恶化。介导金黄色葡萄球菌从强大的急性病原体到为疾病持久性优化的金黄色葡萄球菌的进化的遗传事件和宿主微环境是模糊的,并且在很大程度上尚未开发。在一些值得注意的病原体中,如铜绿假单胞菌,被认为具有组成性增加的突变频率的菌株,称为超突变体,被认为可以通过增加获得有益突变的速率来加速慢性感染期间的病原体适应性。细菌超变子的基因型表征表明,DNA修复和避免错误系统中的突变会导致这种表型。尽管已经报道了多种感染类型的金黄色葡萄球菌超突变体,但它们在感染过程中影响疾病发病机理的作用尚不清楚。;为研究金黄色葡萄球菌超突变体作为慢性感染过程中病理适应催化剂的潜力,在两个DNA修复中构建了突变途径:1)错配修复(MMR; mutS和mutL)和2)氧化鸟嘌呤(GO; mutM,mutY和mutT)系统。这些DNA修复系统的失活产生超突变表型,并改变主要的突变类型和赋予利福平抗性的位点。使用DNA糖基化酶测定法对DeltamutM和DeltamutY的进一步生化分析表明,每个突变体在切除与7,8-二氢-8-氧代-脱氧鸟嘌呤(8-氧代-dG)相关的DNA损伤中均存在缺陷。尽管无法修复该氧化性DNA损伤,但GO和MMR突变体均未显示出对H2O 2胁迫的增强敏感性。进化的体外分析揭示了GO和MMR突变体改变毒力因子(葡萄黄素和α-溶血素)的产生和抗药性的能力。 α-溶血素缺陷型突变体的基因型表征表明,辅助基因调节子(agr)基因座处的突变促成了该表型,并且是所有测试菌株中的突变热点。这项工作提供了证据,证明细菌过度变异可能代表病原体破坏旨在控制和消除感染的努力的一般机制。

著录项

  • 作者

    Canfield, Greg.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Microbiology.;Biology.;Genetics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号