首页> 外文学位 >A modeling framework for the nonlinear dynamics analysis and optimization of electrical stimulation protocols
【24h】

A modeling framework for the nonlinear dynamics analysis and optimization of electrical stimulation protocols

机译:电刺激方案的非线性动力学分析和优化的建模框架

获取原文
获取原文并翻译 | 示例

摘要

Electrical stimulation (ES) is and will be even more a key part of biomedical technology---for advanced prosthetics and therapies. For such purposes and given the underlying system complexity, its effects are to be robustly modeled, studied, and predicted.;This work's primary goal is to identify the key features of efficient low-power ES. Identification of optimal low-stimulation-current waveforms impacts on the related medical and engineering efficiency. The latter has typically been addressed through computationally expensive iteration with uncertain and highly-variable outcome. To do better we also strived to achieve knowledge, understanding and insights by computational modeling at different scales---from single-neuron excitability to population activity patterns. Motivation for working at a neural population scale was provided by the need of a validated computational model to provide an in silico testing environment toward the design of cortical visual prostheses. In the latter, sensory thalamic input would be replaced by optimal-control-based direct ES of modeled cortical laminae---toward evoking natural-like activity patterns. Therefore, once again one encounters the subproblem of optimal low-power ES-current waveforms, which "closes the circle" of the main topics of interest. Such population-scale model also provides for fundamental questions like: Would lamina IV remain the primary stimulation target? Assuming a neocortical canonical functional micro-circuit is indeed put in place by evolution, would it determine uniquely the most efficient spatio-temporal patterns of activation?;This purposes provided the "red-thread" through the individual questions, whose answers---using appropriate approaches and tools (incl. original ones that we developed), constitute a research-and-development framework. The gist of results is as follows.;To determine efficient low-power ES, we employed the Least-Action Principle (LAP) of variational calculus. Thus we were able to derive in closed form a general solution for the globally optimal membrane-potential growth trajectory. Then for a given ionic-current model and protocol, one easily obtains the specific energy-efficient ES current waveform. Such a solution is model-independent by construction. The approach has been demonstrated successfully with the most popular ionic current models from the literature. Costly and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations (ODE's). The approach was further validated through a general comparison to the conventional simulation and optimization results from the literature. To these approaches we have also added one of our own, based on finite-horizon optimal control. Applying the LAP resulted in a number of general ES optimality principles.;Different voltage-gated sodium ion-channel subtypes play distinct functional roles in evolutional, developmental and metabolic challenges. To address the question: How does the Naupsilon ion-channel type distribution affect neuronal dynamic regimens, excitability and refractoriness? we used nonlinear dynamics analysis. A key meta-parameter was derived, which captures a key physical property---the membrane voltage level at which about 50% of the channels of a given subtype are asymptotically activated---a likely prime determinant of function. Continuous variation of this meta-parameter was linked to fundamental, computational and empirical properties of the studied parameterized family of ion channels. This analysis provided bridges toward the informed interpretation of the experimental observations.;We developed a computational model of primary visual activation by sensory stimulation, whose architecture was constrained by the existing knowledge about the quantitative neocortical anatomy. Such published anatomical accounts appears to support the canonical microcircuit concept. Inter-laminar connectivity in the model was estimated numerically through data-driven parameter identification---toward approximating experimentally observed cat electrophysiology data.
机译:电刺激(ES)现已成为并且将成为生物医学技术的关键部分-对于先进的修复和治疗。为此目的,并考虑到潜在的系统复杂性,应对其影响进行稳健的建模,研究和预测。这项工作的主要目标是确定有效的低功耗ES的关键特性。确定最佳的低刺激电流波形会影响相关的医学和工程效率。后者通常已通过计算量大的迭代得到解决,结果具有不确定性和高度可变性。为了做得更好,我们还努力通过不同规模的计算模型来获得知识,理解和见识-从单神经元兴奋性到人口活动模式。需要一个经过验证的计算模型来提供在神经人口规模上工作的动力,以提供一种用于皮层视觉假体设计的计算机测试环境。在后者中,丘脑的感觉输入将被建模皮质层的基于最优控制的直接ES所取代,从而激发出类似自然的活动模式。因此,人们再次遇到了最佳低功耗ES电流波形的子问题,这“引起了人们的兴趣”。这种人口规模模型还提出了一些基本问题,例如:椎板IV是否仍是主要的刺激目标?假设通过发展确实实现了新皮质经典功能微电路,它将唯一地确定最有效的时空激活模式吗?;该目的通过各个问题提供了“红线”,其答案是-使用适当的方法和工具(包括我们开发的原始方法和工具),构成研发框架。结果的要点如下:为了确定有效的低功耗ES,我们采用了变分演算的最小动作原理(LAP)。因此,我们能够以封闭的形式得出全局最优膜势增长轨迹的一般解决方案。然后,对于给定的离子电流模型和协议,可以轻松获得特定的节能ES电流波形。这种解决方案在构造上与模型无关。文献中最流行的离子电流模型已成功证明了该方法。代价高昂且不确定的迭代被常微分方程(ODE's)系统的单个正交所取代。通过与文献中的常规仿真和优化结果进行一般比较,进一步验证了该方法。在这些方法中,我们还基于有限水平的最优控制添加了自己的方法之一。应用LAP导致了许多通用的ES最佳化原理。不同的电压门控钠离子通道亚型在进化,发育和代谢挑战中发挥着独特的功能。解决这个问题:Naupsilon离子通道类型的分布如何影响神经元动态疗法,兴奋性和难治性?我们使用了非线性动力学分析。导出了一个关键的元参数,该参数捕获了关键的物理特性-膜电压水平,在该水平上约50%的给定亚型通道被激活-是功能的主要决定因素。该元参数的连续变化与所研究的参数化离子通道族的基本,计算和经验特性有关。该分析提供了通向实验观察的知情解释的桥梁。;我们开发了通过感觉刺激进行初级视觉激活的计算模型,该模型的结构受到有关定量新皮层解剖学的现有知识的约束。此类已发表的解剖学资料似乎支持规范的微电路概念。该模型中的层间连通性是通过数据驱动的参数识别以数字方式估算的,以近似估算实验观察到的猫电生理数据。

著录项

  • 作者

    Krouchev, Nedialko.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号